ETSITS 102 351 vi.1.1 2004-09)

Technical Specification

Methods for Testing and Specification (MTS);
IP Testing;
TTCN-3 IPv6 Test Specification Toolkit

D

2 ETSI TS 102 351 V1.1.1 (2004-09)

Reference
DTS/MTS-00092

Keywords
IP, interoperability, methodology; testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TS 102 351 V1.1.1 (2004-09)

Contents

Intellectual Property RIGNES.........oo et 5
0T oo O 5
1 o010 SRS 6
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 6
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 7
31 D= T aT] (0] PO P TP PR UPTPRUSUSII 7
3.2 ADDIEVIBLIONS ...ttt et b b h ekt e e e e se e e bt e bt eh e eh e et e e e bt e b e e Rt e Re e e e e e besheebenneeneennen 7
4 THE TTCN-3 FraMEWOTK......ceiieieiieiieiesie sttt st b ettt be st st esbe e e e e 8
5 The [PV6 teSt deVElOPMENT PIOCESS.c.eiuirieitirtereerteste ettt sb b e s ss e et seese b b e s e 8
51 Conformance testing MEtNOAOIOGYc.ccueiterieire ettt ettt b et sb e e 10
52 Interoperability testing MEtNOAOIOGYccceiiiieirieiere e 10
6 The RequIiremMentS Calal OQUEcouereieieieeisie sttt s e e nn s e 10
6.1 Entriesin the ReqQUIremMents CalalOQUEccvcuiieirieeiieie e see st te e st e e s e ne e te e seesse e eeeeeeneesnns 11
7 DEVEIOPING LESE SUITES......cveeeiiecie ettt st e s r e e e et e e e tesre e besbeensesbeereestesaeenseseesneensenrens 12
7.1 Test Suite Structure (TSS) and Test PUMPOSES (TP).....cveuiriiieirieeetereeeete et ere e 12
7.11 S5 TSR 12
7.1.2 LI R 0 1= o1 USROS 12
713 I S o SR 12
714 USING thE TP LANQUAGE.cteeieiieieeiee st esteete et eteesteeste e teestesseesseesseesaeesseeseanseensesseasseesseessensensesnsesnsesnes 13
7.2 TESt SUITE AEVEIOPIMIENLc.ee ettt et e st e st e e e e st e sseesseesteenseensesneesaeesseenseenseeneeeneenseenrnns 13
721 LI 18 L Tex e T 0T oL USSR 13
722 L= A0S = TSP PR PR 14
723 TESE CASE SEIOCTION ...ttt bbb b h ekt s et se e b e s bt eb e e e e e e b e sb e ebeseeene e e enne e 14
724 TeSt SUITE PArAMELEIiZALIONecveeieeiece st e et et e et e sreesreesreeteeneesseesneesseenseenseensensennseessens 14
7.3 Test desCription AEVE OPMENT ...ttt ettt b et b e bt b e b ekt ese et sb et eb e s b e e ebesreneenens 15
8 LI LC T I O Ve 2 T o= YRS 15
8.1 LiDrary SLIUCIUIE OVEIVIBWcouiiieiitiieeietest ettt ettt stttk b ekt b et eb e st b et bbbt e e 15
811 DAlAtYPES @GN VBIUESueeiiiiteieeeete ettt ettt b e et b e et b et b et b et et b e b et et be e 16
8.1.2 JLIE=: 1L -SSR 17
8.1.3 L= A0 = TR P PR URO PR 18
8.14 FFUNCLIONS ...ttt b b h et se et s e e e b e e b e e he e s e e ee e b e se e eb e e aeese e e e ebenbesbeebe e e enneneea 18
8141 Verdict handling fUNCLIONS.........cc.ioiiiicecee et ee s s esneesneeeeenneens 18
8.1.4.2 SyNChroniZati ON fUNCLIONS.cuiiiecie ettt s saeesne e teennesnaesnaesreenreas 18
8.143 IO 1 o 1o PP SS 19
8144 LI {0011 o = PSR 19
8.145 (@107 g 11 o {0 LTRSS 20
8.2 Adding MOdUIESTO Tthe TIBFArYc.ooe bbb bbb ene s 20
9 NAMING CONMVENTIONS.ueeeeieiierieeteeetese et st et steeseesteeseetesseeeessesneesseaseensesseensessesnsessesseensessesneensensens 20
9.1 GENEIAl QUITETTNES.ci ettt e e sttt et e e st e e seeebe et e e s teesteeseesaeesaeesaeesaeenseanseenteaneenneensensrens 20
9.2 NPT g o T VS (=== e U 21
9.3 NaMING [PVE FEOUINEIMENTS.ecueeteeieeiesieseesteesteesteeaeseesseesteete e teessesseesseesseesseasseanseassesseesseessenssennsesnsennensnns 22
94 N FE T a0 T VST I =1 I O 22
10 SPECITYING N UPPEN TESLENeeveeieiieeiesieeeerie st e et ee e s e ee e e st e eesteseestesneeseesseensesaesseensesneensesseeneensensenn 22
10.1 The UT iNthe TPV tESE SYSIEIMottt ettt b e b e et b e e b b ne b b nnene 23
Annex A (informative): A formal notation for expressing test PUrPOSESccccveveveeevevieeiesre e 24
Nt | 11 0o (1o o o PP 24
E N €1 (018 o] oo TSP T PSSRSO PP 24

ETSI

4 ETSI TS 102 351 V1.1.1 (2004-09)

R B N e o 1= L= TP 25
N N = oo o | 25
A4l THE WIth STAIEIMENL ...ttt e et e st e besbeeaeese et eneesee st e nbesneeneeneeneenes 26
AA4d2 I LSRN 1S IR = 1= 0 1= 0| S 26
AA43 I LR A= TR = =00 o S 26
Annex B (informative): Example TTCN-3 library modules..........ccccoeviiieieiiiieeiecece e 27
B.1 Electronic annex, zip file With TTCN-3 COUE -ooeeiiiiee ettt s 27
Annex C (informative): TTCN-3 type definitionsand encoding for a UT protocol ... 28
[1T (TSR P PSPPSR 29

ETSI

5 ETSI TS 102 351 V1.1.1 (2004-09)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS).

ETSI

http://webapp.etsi.org/IPR/home.asp

6 ETSI TS 102 351 V1.1.1 (2004-09)

1 Scope

The purpose of the present document isto provide broad guidelines on the use of a common method for devel oping test
specifications for IPv6. This method is applicable to al IPv6 categories including the core specification, mobility,
security and transitioning to |Pv6 from I Pv4.

The underlying method is based on the methodol ogies specified in 1SO/IEC 9646-1 [4] for conformance tests and
ETSI TS 102 237-1 [1] for interoperability tests. It provides guidance on the development and use of the following key
elements of the method:

- aReguirements Catalogue (RC);
- aTest Suite Structure (TSS) and Test Purposes (TP);
- Test Descriptions (TD) - interoperability;
- aTTCN-3library of datatypes and values, templates and functions;
- anAbstract Test Suite (ATS) - conformance.
The method also offers guidance on a naming convention and other style-related issues.

Although the present document has been developed primarily for use in the testing of 1Pv6 standards, it could equally
be used in other areas of protocol test specification.

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI TS 102 237-1 (2003): "Telecommunications and Internet Protocol Harmonization Over
Networks (TIPHON) Release 4; Interoperability test methods and approaches; Part 1. Generic
approach to interoperability testing”.

[2] ETSI EG 202 106 (2003): "Methods for Testing and Specification (MTS); Guidelines for the use
of formal SDL as a descriptive tool".

[3] ETSI ES 201 873-6 (2003): "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[4] ISO/IEC 9646-1 (1992): "Information Technology - Open Systems I nterconnection - Conformance
Testing Methodology and Framework - Part 1. General concepts'.

[5] IETF RFC 2460 (1998): "Internet Protocol, Version 6 (IPv6) Specification".

[6] IETF RFC 1035 (1997): "Domain names - implementation and specification”.

ETSI

http://docbox.etsi.org/Reference

7 ETSI TS 102 351 V1.1.1 (2004-09)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

behavioural function: a TTCN-3 function which specifies actions which result in the sending of messages to one or
more observed interface

computational function: a TTCN-3 function which specifies actions which modifies data values but does not result in
the sending of messages to one or more observed interface

Equipment Under Test (EUT): grouping of one or more devices which has not been previously shown to interoperate
with previously Qualified Equipment (QE)

Qualified Equipment (QE): grouping of one or more devices that has been shown, by rigorous and well-defined
testing, to interoperate with other equipment

NOTE: Oncean EUT has been successfully tested against a QE, it may be considered to be a QE, itself.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3GPP 3" Generation mobile Partnership Project

AP Application Programming Interface

ATS Abstract Test Suite

EUT Equipment Under Test

IETF Internet Engineering Task Force

IFS I nteroperable Functions Statement

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IuT Implementation Under Test

MTC Main Test Component

NGN Next Generation Network

PICS Protocol Implementation Conformance Statement
PTC Parallel Test Component

QE Qualified Equipment

RC Requirements Catalogue

RFC Request For Comments (IETF terminology for a draft standard)
RQ Requirement

SUT System Under Test

TISPAN ETSI technical body with responsibility for NGN standardization
TC Test Case

TCl TTCN-3 Control Interface

TD Test Description

TE Test Equipment

TP Test Purpose

TSS Test Suite Structure

TTCN-3 Testing and Test Control Notation edition 3

UDP User Datagram Protocol

uT Upper Tester

UTP Upper Tester Protocol

ETSI

8 ETSI TS 102 351 V1.1.1 (2004-09)

4 The TTCN-3 Framework

ETSI test specifications are usually developed for a single base protocol standard or for a coherent set of standards. As
such, it is possible to follow the methodology specified for conformance test development in ISO/IEC 9646-1 [4]
without much difficulty. However, the requirements of |Pv6 are distributed across a wide range of documents and a
different approach to test development is necessary. It is this approach that is referred to as the "TTCN-3 Framework".

Asits name implies, the framework is oriented towards the production of Abstract Test Suites (ATS) in the Testing and
Test Control Notation edition 3 (TTCN-3). The TTCN-3 Framework comprises:

. a documentation structure;
- catalogue of requirements;
- Test Suite Structure (TSS);
- Test Purposes (TP);
" conformance;
L] interoperability;
. Abstract Test Suite (ATS);
- Test Cases (TC) in TTCN-3 for conformance tests;
- Test Descriptions (TD) in tabulated English for interoperability tests;
. library of TTCN-3 building blocks,
- data types and val ues;
- templates;
- general computational functions;
- TP functions (see clause 7.2.1);
. amethodology linking the individual documentation, library and ATS elements together;
- style guidelines and examples;
- naming conventions;
- guidelines on the use and extension of the TTCN-3 library;
- a structured notation for TPs.

The TTCN-3 Framework, particularly the methodology, draws heavily on the tried and tested | SO/IEC 9646-1 [4] but
modifiesit to suit the particular case of IPv6 testing. It also incorporates guidelines on interoperability testing taken
from TS 102 237-1 [1].

5 The IPv6 test development process

The process to be followed when developing IPv6 test specificationsis shown in figure 1.

ETSI

ETSI TS 102 351 V1.1.1 (2004-09)

3G Mobile
Specifications oee
\ 4
Industry _/ Collect RFC
Practice " \Requirement:
IPv6 Forum &
other sources
Conformance 1 Requirement 1requirement INtEroperability

Write Test
Purposes

1TP
TSS & TP =

1 TP Function Groug

Write TP
Functions

1 TP Function Groug

=
1 Test Case

Write Test
Cases

1 or more TCs

=>
1ATS

v

1 or more TPs

/

Requirements

1 or more TPs

Test
Descriptions

Interoperability

Write Test
Purposes

1TP
=

1 TP Function Groug

Write Test D
Descriptions

| Test Description
=)

1 Test Case

Catalogue
-~ | Requirements
X-Ref Index
TP_01_aaa_nn
TP Function
Groups
TTCN-Z
Library

JC 01_aaa_nn

Test Cases

Test Cases

Write Test
Cases

1
1 or more TCs

=
1ATS

Consm .
ATS -

Co

Conformance
nformance [,

=

Conformance [
Test Suite

Conformance |
Test Suite

Figure 1: IPv6 test development process

ETSI

_ / Construct
o ATS

10 ETSI TS 102 351 V1.1.1 (2004-09)

The process begins with the analysis of the IETF RFCs related to IPv6 and a range of secondary inputs which include:
. current industry practice;
. existing test documentation from the |Pv6 Forum and other established sources;
. specifications related to the use of 1Pv6 in 3™ Generation mobile networks.

Theresult of this analysisisthe identification and classification of afull range of 1Pv6 requirements which is recorded
in the Requirements Catalogue and used as the basis for both conformance and interoperability test specifications.

5.1 Conformance testing methodology

Any conformance test specification should be produced following the methodology described in ISO/IEC 9646-1 [4]. In
summary, this methodology begins with the collation and categorization of the requirements to be tested into a tabular
form which is normally referred to as the "Protocol I|mplementation Conformance Statement” (PICS). Each PICS relates
to aspecific protocol standard. As the requirements of 1Pv6 are distributed across alarge number of documents, there
would be very little benefit in producing a PICS for each document. Consequently, the IPv6 requirements will be
collected together and categorized in a single document, the Requirements Catal ogue.

For each requirement in the catalogue, one or more tests should be identified and classified into a number of groups
which will provide a structure to the overall test suite (TSS). A brief Test Purpose (TP) should then be written for each
identified test and this should make it clear what is to be tested but not how this should be done. Finally, a detailed Test
Case (TC) iswritten for each TP. In the interests of test automation, TCs are usually combined into an Abstract Test
Suite (ATS) using a specific testing language such as TTCN-3.

5.2 Interoperability testing methodology

For a certification (or branding or logo) scheme to be meaningful, it is necessary that interoperability testing is carried
out in addition to conformance testing and that this is done in accordance with a comprehensive and structured suite of
tests. In the context of the present document, it is exactly this type of testing which isreferred to as " Interoperability
Testing". The purpose of interoperability testing is to prove that the end-to-end functionality between (at least) two
communicating systemsis as required by the standard(s) on which those systems are based. A methodology for
developing such interoperability test specification is described in TS 102 237-1 [1] and this should be used as aguide
when developing IPv6 test suites. This methodology is based extensively on |SO/IEC 9646-1 [4] but with some
modifications to make it more suitable for interoperability testing.

In TS 102 237-1 [1], the Interoperable Functions Statement (1FS) replaces the PICS and is a statement of which
functions supported by the protocol have been implemented. However, in this framework these functions should be
clearly identified in the Requirements Catal ogue.

6 The Requirements Catalogue

The requirements which collectively specify and characterize |Pv6 are taken from a wide range of specifications and
other documentation. Building a coherent set of test specifications from these disperse requirements can be made
simpler by gathering the requirements together into a single catalogue. The Requirements Catalogue lists IPv6
requirements from the various sources and organises them in a tree structure.

An example of the Requirements Catalogue in atabulated form is shown in table 1 and table 2. The root of the
catalogue consists of the base | Pv6 functions/requirements (table 1), each of which can be specified further in
sub-tables. The examplein table 1 indicates that there is a requirement "provide something” which is elaborated in
table 2.

ETSI

11

ETSI TS 102 351 V1.1.1 (2004-09)

Table 1: Provide IPv6 Services (example)

Requirement Group: Source Requirement IPv6 Label Requirement
Root of IPv6 Requirements Reference Type Dependencies
1 |Provide something RFC XYZ, 1.7 MUST MUST None

[Provide something else]
2 (table 2) N/A None
Limit the packet's
3 something RFC XYZ, 3.3 MAY MUST None
Provide the packet's if R3 then
4 |something RFC XYz, 3.4 MUST MUST — IMUST else N/A
5 |Do something completely | s 1534 55 1 MUST N/A None
different

Table 2: Provide something (example)

Requirement Group: Source Requirement IPv6 Label Requirement
Provide something else Reference Type Dependencies
32 |Provide sub-something RFC XYZ, 1.8 SHALL MUST None
33 ersoe‘"de sub-something | prc yyz 23 SHOULD B None
34 |Provide another RFC XYZ, 3.4 MAY LT None
sub-something else

NOTE 1. Thisinformation may be presented in various forms, ideally as hyperlinked web pages. The intention of
tables 1 and 2 isto show the extent of the information that needs to be collected.

NOTE 2: The grey columns indicate information that is supplied by a specific organization (the IPv6 Forum in this
example) and is not supplied during the development of the test specifications as defined in this
framework.

6.1 Entries in the Requirements Catalogue

For each requirement in the catal ogue the following information should be present:

reguirement group which is either the root of the Requirements Catal ogue or a sub group (another table) of
reguirements;

areguirement identification number (clause 9.3). For easy use of the Requirements Catal ogue, a sequential
numbering system should be used in the table with a separate and complete cross-reference list linking the
sequential numbers in the tables and the requirement identification numbers;

the requirement in text:

- arequirement in square brackets [] indicates a functional category created for structuring purposes. The
category may not be specifically mentioned in any of the sources and is derived during development of
the catalogue;

reference to the source of the requirement (for example, an RFC number, or industry practice as may be
defined in documentation specific to the IPv6 Forum or 3GPP). The reference should be precise and
unambiguous, for example "RFC XY Z, 1.7" indicates that the reference text is from clause 1.7 of the RFC that
is this requirement's source.

the type of requirement (MUST, SHALL, SHOULD, MAY) which is useful in determining whether a
requirement is optional or mandatory:

- the keyword N/A is used to indicate that a requirement is not applicable;

ETSI

12 ETSI TS 102 351 V1.1.1 (2004-09)

- some requirements may be "negative" requirements, for example "... MUST not do something ...". In
such cases the requirement type should be indicated as MUST_NOT (SHALL_NOT, SHOULD_NOT,
MAY_NOT);

- for various reasons the language used in a particular standard may not always follow the relevant drafting
rules and words such as " can/ought/will/could/etc." may be used to express a requirement. In such cases,
the Reguirement Type is assumed from the text and qualified with the word 'implied' in parentheses, for
example MUST (implied);

. the organization requirement type. To befilled in by a particular organization which may wish to redefine the
type of arequirement by, for example, statingaMAY requirement to be aMUST, or excluding a particular
reguirement. Typical cases of this would be the needs of the |Pv6 Forum (v6Ready label requirement), 3GPP
or ETSI TISPAN (NGN);

. the requirement dependencies. In many cases the implementation of one requirement will depend on the
implementation of another. For example, arequirement of the kind "... An IPv6 host MAY support <R3>. If it
does then the host MUST also support <R4>...". These dependencies are described as a Boolean expression
(similar to those used in aPICS). In table 1 for R4 thisis written as"If R3 then MUST else N/A". These
Boolean expressions are linked to Boolean module parameters that is used in the control part of the relevant
TTCN-3 module to switch in or out individual test cases and/or groups of test cases. Note that changes to the
Requirement Type as stated in the Organisation Requirement Type column may impact on the corresponding
entries in the Dependencies column.

7 Developing test suites

7.1 Test Suite Structure (TSS) and Test Purposes (TP)

711 TSS

TSS groups should be chosen according to natural divisionsin the base specification(s) and/or the architecture of the
testing configuration. Examples might be, "Normal behaviour" and "Exceptional behaviour" or "Uni-cast operations"
and "Multi-cast operations’.

Interoperability test groups can be identified, for instance, according to the functionalities specified in the Requirements
Catalogue.

7.1.2 TP Contents

A Test Purpose (TP) should be written for each potential test of an IPv6 requirement remembering that a requirement
may need more than one TP to ensure that it is fully tested. Aswell as describing what is to be tested, the TP should
identify the initial conditions to be established before testing can take place, the required status of the Implementation
Under Test (IUT) or Equipment Under Test (EUT) from which testing can proceed and the criteria upon which verdicts
can be assigned.

The contents of a TP should be limited to a description of what is to be tested rather than how that testing is to be
carried out.

7.1.3 TP checklist

The TP checklist maps a specific requirement to one or more Test Purposes for that requirement. The numbering and
naming conventions of clause 9 ensure consistency between requirements numbering and Test Purpose numbering. This
checklist (table 3) serves as a useful summary as well as acting as a checklist for a particular IUT to indicate what
requirements are supported. The IUT Support column isfilled in at the time of testing (hence shown in grey).

ETSI

13 ETSI TS 102 351 V1.1.1 (2004-09)

Table 3: TP checklist

Organization: IPv6 Label
Requirement TP IUT Support
1 TP1 1,TP1 2 Yes
2 TP2 No
3 TP3 1, TP3 2,TP3 3 Yes

7.1.4 Using the TP Language

Thereis considerable benefit to be gained by having all TPswritten in asimilar way. Readers of the TPs will find them
easier to understand and harder to misinterpret. With thisin mind, a simple, structured specification language has been
developed for the expression of TPs. Thisis described fully in annex A. The use of this notation simplifies the
identification of initial conditions, preamble, test description and postamble. Examples of the use of the language to
express TPs are shown below.

EXAMPLE 1.

tp id TP 40147
title aligning PadN option
rc ref RC 61255
config ref CF_0O1
ensure that
when { | UT receives Echo Request from TNL
cont ai ni ng Hop- by-Hop Options Header
i ndi cati ng Header Ext Length field ZERO
and PadN option containing Opt Data Len field set to 4
and Option Data aligning the Hop-by-Hop Options Header
to anmultiple of 8 octets }
then { IUT sends Echo Request to TN2}

EXAMPLE 2:

tp id TP 40147
title not aligning PadN option
RC ref RC_61256
config ref CF_01
ensure that
when { RUT receives invalid Echo Request from TNL
cont ai ni ng Hop- by-Hop Options Header
i ndi cati ng Header Ext Length field ZERO
and PadN option containing Opt Data Len field set to 3
and Option Data not aligning the Hop-by-Hop
Options Header to a multiple of 8 octets }
then { RUT sends PARAMETER PROBLEM to TN1
containing the Code field indicating code value 2
and the Pointer field indicating pointer value }

7.2 Test suite development

7.2.1 TP function groups

For each TP, a TP function group is specified in TTCN-3 and this should contain one function per test component.
These functions should not be complete TCs with preambles and postambles but should contain only the TTCN-3
necessary to carry out the actions that the TP requires. A TP function should not set the test component verdict but
should return avalue which the calling TC can use to determine the verdict. Each of these TP functions will be entered
into the project TTCN-3 library for future use in the development of TCs.

ETSI

14 ETSI TS 102 351 V1.1.1 (2004-09)

7.2.2 Test cases
A TC can be developed in TTCN-3 from the appropriate TP function(s) by adding:
. apreamble:
- the actions required to place the IUT or EUT into the status required by the TP function;
. synchronization code:

- the actions required to ensure that the main test component and any parallel test components are
established in a known, coordinated status prior to the start of the test itself;

. the evaluation of afinal verdict:

an assessment of the overall performance of the IUT or EUT based on information returned from TP Function calls, to
determine whether it can be considered to have passed the test or not;

. apostamble:

the actions required to return the IUT or EUT to a known quiescent state after completing the test.

7.2.3 Test case selection

The conformance test suite isa TTCN-3 module comprising all the test cases relevant to a particular area of 1Pv6, for
example, Core IPv6. This set of test cases may be subset by the requirement needs of a particular organization
(e.g. IPv6 Forum or 3GPP) as defined in the requirements catal ogue for the organization.

In the control part of the test suite module each Test case should be preceded by a selection statement as shown in the
following example:

If (RQ.01_407==true){
execute (f_TC 01_407_35_| Pv6Router())
}

In this example RQ_01 407 is a module parameter of type Boolean whose value is set by the entriesin the lUT column
of table 3 (Yes=true, No=false).
7.2.4 Test suite parameterization

It is often necessary to parameterise a test suite so that values not known at the time of writing the test cases can be used
in testing. These values may depend on the IUT or the test system on which the test suite is being run.

NOTE: Test suite parameter val ues correspond to values normally found in a PICS or PIXIT.

Table 4 shows an example of how test suite parameters could be documented. The IUT Vaue column is completed at
the time of testing.

Table 4: Module (test suite) parameters

Organization: |Pv6 Label

Parameter Name Description Reference Type IUT Value
R_HOST IP address for remote N/A IPAddress
host
T1 Response timer RFC XYZ, 3.2 integer

ETSI

15 ETSI TS 102 351 V1.1.1 (2004-09)

7.3 Test description development

Test Descriptions (TDs) specify the detailed steps that must be followed in order to achieve the stated purpose of each
interoperability test. These steps should be specified in a clear and unambiguous way but without placing unreasonable
restrictions on how the step is performed. TDs written in a structured and tabulated natural language are ideal when the
tests themselves are to be performed manually. If, however, tests are to be automated, test cases should be writtenin
TTCN-3. The development of TTCN-3 test cases does not mean that TDs should not also be produced because they
have significant value as higher-level designs of the test cases.

NOTE: TDsshould only be used in the specification of interoperability tests and not for conformance tests.

8 The TTCN-3 library

In order to facilitate the rapid and consistent production of both abstract and executable test suites, alibrary of reusable
TTCN-3 elements will be maintained. This library will be made freely available so that manufacturers, operators,
testing organizations and other standards bodies can make use of it in constructing 1Pv6 test suites specific to their
needs.

Oncethelibrary is established, facilities will be introduced for the controlled addition of new TTCN-3 elements and the
modification of existing ones.

NOTE: Thefollowing clauses specify a number of rules as strong recommendations (" should") because they are
considered to be based on good test programming practice. However, any TTCN-3 segments submitted
for inclusion in the IPv6 TTCN-3 Library will be expected to comply with these recommendations as if
they were mandatory.

8.1 Library structure overview

Although TTCN-3 does not mandate the use of any structure in alibrary, the elements will be grouped logicaly into a
number of modules, thus:

. types and values which include:
- data elements;
- ports;
- components;
- module parameters;
- templates;

. functions:
- verdict handling functions;
- synchronization functions;
- test case functions;
- TP functions;

- other functions.

ETSI

16 ETSI TS 102 351 V1.1.1 (2004-09)

8.1.1 Data types and values

Commonly used subtypes for fields (e.g. subtypes for different encoding of integer, and octetstring values) are held
within a single module. The TTCN-3 encode attribute is used here to provide additional information to codecs because
the TCI [3] currently does not support access to subtyping information. This module also contains IPv6 library module
parameter definitions.

type Unt2 integer (0..3) with { encode "2 bits" }
type Cctet2 octetstring length(2) with { encode "2 octets" }

Types for data elements are organized in one module per RFC. A specia role plays the root RFC which imports all
other RFC modules. The latter also defines the union types for al 1P headers and payloads. In general the type and
value specification is modularized as follows:

. Common Library (CommonLib_TypesAndValues):
Useful types which can be used in other projects;
Example: CommonLib_TypesAndValues.UInt8

NOTE: Throughout the present document, examples indicate where relevant TTCN-3 code can be found in the
electronic attachment in annex B

IPv6 Library (IpvbLib_Common_TypesAndValues):
Types that are used by more than one RFC are defined here;
Example: Ipv6Lib_Common_TypesAndVaues.MtuOption
. PIXIT parameters and Constants which are useful for multiple RFCs are grouped and defined here;
Example: Ipv6Lib_Common_TypesAndValuesPX LLA_ADDR TN
. RFC 2460 [5] Root Library (Ipv6Lib_Rfc2460Root_TypesAndVal ues):
models the | Pv6 packet and therefore imports all the RFC type modules
. RFC-Specific Library (Rfc_Specific_TypesAndVa ues):
- Each RFC module models a specific RFC;
EXAMPLE 1: Ipv6Lib_Rfc2461NeighborDiscovery TypesAndValues
- Each RFC module should only import the Common Library and the IPv6 Lib;
- RFC specific PIXIT parameters and Constants should be grouped and defined here.
The rules used to define the types in each module are:

. If an RFC modifies an information element of another RFC then a separate type should be created in the RFC
modules;

EXAMPLE 2: |pv6Lib_Rfc2461NeighborDiscovery TypesAndValues.Prefixinfo
and IpvbLib_RfcXXXXMipv6_TypesAndVa ues.MipPrefixinfo

. If an RFC module needs to use atype which is aready defined in another RFC module then this type should
be moved to the IPv6 Library;

EXAMPLE 3: Ipv6Lib_Common_TypesAndValues.SrcLinkLayerAddress used in
Ipv6Lib_Rfc2461NeighborDiscovery TypesAndValues and
IpvBLib_RfcXXXXMipv6_TypesAndValues

ETSI

17 ETSI TS 102 351 V1.1.1 (2004-09)

Any field of basic type in a user defined type should use the subtypes defined in the Common Library module;

EXAMPLE 4: Ipv6Lib_Rfc2894RouterRenumbering_TypesAndV a ues.RrMatchPrefix

Field names of user defined types as well as type names should not be abbreviated but be written in full;

List type identifiers should use the postfix "List". They should use length restrictions in their type definition,
e.g. alower bound of one list element;

IPv6 packet structure is defined in RFCs using tables in which the encoding is specified. In some cases these
tables allow a group of information elementsto occur in arbitrary order. Here the following approaches should
be taken in deriving their type structure:

If this group consists only of information elements which can occur only once then a set type should be used to
model that group. Elements which are not required in al packets should be reflected as optional set fields;

EXAMPLES: |Ipv6Lib_Rfc2461NeighborDiscovery TypesAndVa ues.RtAdvOptions

If some or all information elementsin a group are able to occur more than once consecutively in a packet then a set type
should also be used to model the group. List types should model set fields which can occur multiple times;

EXAMPLE 6: Ipv6Lib_Rfc2461NeighborDiscovery TypesAndValues.PrefixInfoList

If the group allows some of its informational elements to occur more than once but in any order then a set of union type
structure should be used. This type structure should also be used to model frequently extended groups such as IP
headers and | P packet payload.

EXAMPLE 7: |pv6Lib_Rfc2460Root_TypesAndVa ues.ExtensionHeaderL ist

Component and port types are specified in a separate module. The following rules apply to component types:

There should be one general component type per protocol. Thistype isintended for use in the runs on
statement of functions which define behaviour that can be used in any test component, irrespective of itsrole
in the test case;

EXAMPLE 8: CommonLib_Synchronization.MtcComp

There may be additional component definitions for specific roles. These should take the definitions of the
genera type as a basis and may extend them with additional port, timer, or variable definitions. These types
should be used in the runs on statement of functions which define behaviour which can only make sensein the
context of aspecific role, e.g. in atest case function.

EXAMPLE9: Ipv6Ats Core TestSystem.Master.

8.1.2

Templates

Conceptually, template definitions follow the same RFC based modularization as the types for data elements. The
following rules apply to template specification:

Templates should be identified with names rather than numbers;

Templates should not modify other modified templates. Base templates which are modified must be identified
in their naming;

Templates should be specified separately for use in sending and receiving operations. Postfixes (clause 9)
should be appended to clarify their use;

EXAMPLE: Ipv6Lib_Rfc2463lcmpv6_Templates.m_echoRequest_noData snd

and IpveLib_Rfc2463Icmpv6_Templates.m_echoReply noData rcv

Template definitions should avoid using matching attributes such as"*" or "?" for complete structured values,
e.g. record or set of values;

PIXIT parameter values (table 4) should be passed as parameters into templates.

ETSI

18 ETSI TS 102 351 V1.1.1 (2004-09)

8.1.3 Test cases

Every test case should be selectable by having atest case selection function (see clause 7.2.3). This applies even to
those test cases that test mandatory requirements from the base specification.

Where the test configuration invol ves more than one test component, the test case is coordinated by the MTC which:
. establishes the test configuration by creating, starting, mapping and connecting PTCs,
. starts the TC Function of each PTC;
. synchronizes the PTCs;
. shuts down the test configuration by unmapping and disconnecting PTCs.

If the test configuration involves only one test component, the test case isimplemented by the MTC asa TC Function
which also maps and unmaps required ports.

8.1.4 Functions

The IPv6 library differentiates between synchronization functions, verdict handling functions, TC functions, TP
functions and other functions. Each type of function isimplemented in a separate module, although there may be
multiple modules for each function type. As an example, TP functions related to IPv6 core package could be
implemented in a different module from the TP functions related to IPv6 security. The following general rules apply:

. Functions should use the runs on statement wherever thisis possible;

. Each function should provide areturn value. It is recommended to use the return value enumeration defined in
the Common Library module;

EXAMPLE: CommonLib_TypesAndVa ues.FncRetCode
. If aselection switch is used then the associated if statement body should contain only afunction call;
. The stop statement should be used with care in functions (controlled test component shutdown should be
alwaysinsured).
8.14.1 Verdict handling functions
The following guidelines apply to functions which handle verdicts:
. Test verdict functions should only be used in the TC function or in the test case itself;

. Test verdict functions use the return value from a function to determine atest verdict.

8.1.4.2 Synchronization functions
The following guidelines apply to functions handling the synchronization of multiple, parallel test components:

. Synchronization should be invoked by the MTC at least after the preamble and before the postamble. The
MTC may aso invoke synchronization at other appropriate times;

. A PTC should synchronize after setting averdict. Thisisto ensure that the verdict is always set prior toaPTC
shutdown;

. Synchronization should use "named" synchronization as implemented in the ETSI TTCN-3 synchronization
common library module:

- Named synchronization uses a different synchronization message for each synchronization in order to
avoid confusion where multiple synchronizations are required. The message is constructed from a
synchronization string (chosen by the TTCN writer) concatenated with the string "- READY".

ETSI

8.1.4.3

19 ETSI TS 102 351 V1.1.1 (2004-09)

Synchronization of test termination should use the stop message which is the character string "sToP";

To terminate test execution a PTC should send the stop message to the MTC and wait for the corresponding
STOP-notification fromthe MTC;

If an MTC receives the stop message then it should send stop messagesto all PTCs,

To terminate test execution an MTC should send the stop message to all PTCs and wait for them to cease
execution;

If a PTC receives the stop message then it should execute the appropriate postamble. This could be

implemented as default behaviour. As this notification may occur at any point of the PTC execution, the
postamble should take its current state into account.

TC functions

The following guidelines apply to TC functions:

8.1.4.4

TC Functions should only be necessary where there is more than one test component in the test architecture;
Each PTC should have one TC Function defined for it;

A TC Function isinvoked in the "start test component” operation of atest case;

TC Functions should be grouped with their associated test case;

A TC Function should implement behaviour by invoking other functions rather than by expressing it directly.
Any behaviour implemented directly in a TC Function would not be reusable in other test cases or functions;

The name of a TC Function should include the role as well as the test case identifier as shown in the following
example:

- f.TC_01 051 12 Ipv6Host

TP functions

The following guidelines apply to TP functions:

A TP Function should implement the test purpose for one component only;

If there is more than one test component identified in the architecture associated with a TP, there should be one
TP function for each of these components;

If there is only one test component identified in the test architecture, there should be only one TP function for
each TP;

The name of a TP function should include the role as well as the test purpose identifier as shown in the
following example:

- f TP 01 051 12 Ipv6eHost();
A TP function should not call other behavioura functions although computational functions can be called;

TP functions should contain neither invocation nor implementation of test configuration management,
preamble, or postambl e aspects;

A TP function should not set a verdict but use the return value to pass information with which the calling TC
can determine a verdict. This alowsthe reuse of TP functionsin preambles or postambles.

ETSI

20 ETSI TS 102 351 V1.1.1 (2004-09)

8.1.45 Other functions

Other function types should be collected into modules using grouping criteria appropriate to the particular application or
project. Examples of such functionsinclude test configuration management, preambles, postambles and algorithms.

The following guidelines apply to functions in this category:
. Other functions should not set verdicts but should use return values in the same way as TP functions;

. Other functions should never call the stop operation as this prevents execution of the postamble by TC
functions;

. Other functions may call TP functionsif they match the requirements of a preamble or postamble.

8.2 Adding modules to the library

Users or organizations may submit their own modules for addition to the ETSI IPv6 TTCN-3 module library. Such
modules should be submitted to ETSI Technical Committee MTS for review. Details of the submission process can be
obtained from the ETS| Secretariat at mtssupport@etsi.org.

9 Naming conventions

9.1 General guidelines

The IPv6 TTCN-3 library will be publicly available for test developers to use and, in a controlled way, extend. It is,
therefore, desirable to specify a naming convention to cover each of the TTCN-3 elements which require an identifier.

The naming convention is based on the following underlying principles:

. when constructing meaningful identifiers, the general guidelines specified for naming in clause 6 of
EG 202 106 [2] should be followed.

. in most cases, identifiers should be prefixed with a short aphabetic string (specified in table 5) indicating the
type of TTCN-3 element it represents,

. suffixes should not be used except in those specific casesidentified in table 5;
. prefixes and suffixes should be separated from the body of the identifier with an underscore (*_"):
EXAMPLES. c_sixteen, t_wait_nax;

. only module names, data type names and module parameters should begin with an upper-case letter. All other
names (i.e. the part of the identifier following the prefix) should begin with alower-case letter:

. the start of second and subsequent words in an identifier should be indicated by capitalizing the first character.
Underscores should not be used for this purpose:

EXAMPLE 2: f_authenticateUser;

Table 5 specifies the naming guidelines for each element of the TTCN-3 language indicating the recommended prefix,
suffixes (if any) and capitalization.

ETSI

21

ETSI TS 102 351 V1.1.1 (2004-09)

Table 5: IPv6 TTCN-3 naming convention

Language element Naming convention Prefix Suffix Example Notes
Module Use upper-case initial letter none none IPv6Templates
TSS grouping Use all upper-case letters as |none none TP_RT_PS_TR
specified in clause 9.2
Item group withina |[Use lower-case initial letter none none messageGroup
module
Data type Use upper-case initial letter none none SetupContents
Data template Use lower-case initial letter m_ _snd m_setuplnit_snd Notes 1
rcv m_setupBasic_rcv and 2
Port instance Use lower-case initial letter none none signallingPort
Test component ref |Use lower-case initial letter none none userTerminal
Signature Use lower-case initial letter S none s_callSignature
External function Use lower-case initial letter xf none xf_calculateLength()
Constant Use lower-case initial letter C none Cc_maxRetransmission
Function Use lower-case initial letter f none f_authentication() Note 6
Altstep Use lower-case initial letter a_ none a_receiveSetup()
Altstep (Default) Use lower-case initial letter d_ none d_receiveOtherMessages()
Test case Use numbering as specified in [TC_ none TC01_009_47
clause 9.4
Variable Use lower-case initial letter vV_ _gbl v_macld Note 3
v_systemName_gbl
Timer Use lower-case initial letter t _min t_wait Note 4
~max t auth min
Module parameter Use all upper case letters none none PX_MAC_ID Note 5
External constant Use lower-case initial letter XC none xc_macld
Parameterization Use lower-case initial letter p_ none p_macld
Enumerated Value |Use lower-case initial letter e none e_synCpk

NOTE 1:

identifier should give further information about the template's purpose (e.g. m_setuplnit_snd,
m_setupBcapFax_snd).

NOTE 2:
NOTE 3:
NOTE 4:
NOTE 5:
NOTE 6:

If no suffix is used, the template is considered to be bidirectional.
Local variables have no suffix but if global variables are used, the suffix "_gbl" should be appended.
If a time window is needed, the suffixes "_min" and "_max" should be appended.
In this case it is acceptable to use underscore as a word delimiter.
The naming of TP functions follows the convention described in clause 9.4 for TPs

If different templates based on the same typeg are introduced, the name part (not prefix or suffix) of each

9.2

Naming IPv6 test groups

TP groups have a short name (or identifier) and alonger, more readabletitle. The short name is derived from the longer
title (i.e. it isatwo or three letter abbreviation of the longer title name). For example, if the long title is"Router”, the
short name could be: "RT". It is recommended that the title is followed by the short name in parentheses, for example:
"Router (RT)"In the case of subgroups both the title and the short name should reflect the sub structuring, essentially
making them path names. The group delimiter in the case of thetitleis"/". The delimiter in the case of the short name
is:"_". Asafurther example, the group "Provide IPv6 Services (PS)" which isa sub group of the "Router (RT)" group,

has the title:

Rout er (TR)/ Provi de | Pv6 Servi ces(PS)

and the short name:

RT_PS

ETSI

22 ETSI TS 102 351 V1.1.1 (2004-09)

9.3 Naming IPv6 requirements

Although individual requirements will not need to be identified in the TTCN-3 code, it will till be necessary to provide
a unique name for each requirement in the catalogue. Each requirement name will begin with "RQ_" followed by two
digitsindicating which area of the IPv6 specification it refersto and athree-digit identifier, as follows:

. RQ 01 nnn IPv6 Core requirements (example: RQ_01_254)
. RQ_02_nnn 1Pv6 Security requirements (example: RQ_02_037)
. RQ 03 nnn IPv6 Mobility requirements (example: RQ_03_198)

. RQ _04 nnn IPv4to IPv6 Transitioning requirements (example: RQ_04 471)

9.4 Naming IPv6 TPs and TCs

Asthere will be a one-to-one relationship between TPs and TCs, they will share a common numbering scheme with a
prefix to distinguish between them. The prefixes will, naturally, be "TP" for test purposes and "TC" for test cases which
will be followed by the five-digit sequence number taken from the requirement it corresponds to, a two digit sequence
number and finally a character string indicating the architectural role with which it is associated, thus:

. TP_01_nnn_mm_aaaa/TC_01_nnn_mm_aaaa IPv6 Core TPsand TCs

EXAMPLE 1: TP_01 147 04 IPv6Host, TC_01 147 04 |Pv6Host

. TP_02_nnn_mm_aaaa/TC_02_nnn_mm_aaaa IPv6 Security TPsand TCs
EXAMPLE2: TP_02_109 17 IPv6Router, TC_02 109 17 IPv6Router

. TP_03 nnn_mm_aaaa/TC_02_nnn_mm _aaaa |Pv6 Mobility TPsand TCs
EXAMPLE3: TP_03 033 05 |Pv6Terminal, TC_03 033 05 IPv6Terminal

. TP_04 nnn_mm_aaaa/TC 04 _nnn_mm _aaaa |Pv4 to IPv6 Transitioning TPsand TCs

EXAMPLE 4: TP_04_006_32_|Pv6Server, TC_04_006_32_|Pv6Server)

10 Specifying an upper tester

In order to completely automate conformance and interoperability testing, the upper interface or API of the IUT needs
to be accessible to TTCN-3 test cases. The specification of this upper interface is not standardized by 1Pv6 RFCs and so
there are no primitives defined for requesting the IPv6 stack to send a specific |P packet or to check if one has been
received. Consequently, implementations of thisinterface are vendor specific and may even vary between different
IUTs.

EXAMPLE: it may based on primitives or the socket API and often requires atight integration with the [UT.

ETSI

23 ETSI TS 102 351 V1.1.1 (2004-09)

IPv6 Test System Ipv6 Router
IPv6 Router TTCN-3 Test Case (SUT)
Upper
Upper Tester IPv6 Host] Tester
Test Test]
Component Component
IPv6 Stack
JPERRINY B — L — » TRI (1IUT)
1
SUT Adapter || IPv6 & UTP
(IPv6 & UTP Transport) Transport

Figure 2: An example test configuration with an upper tester

In conformance testing methodol ogy the tight integration problem can be resolved by implementing an Upper Tester
(UT) inthe SUT, i.e. outside of the test system. The purpose of the UT isto play the role of a (dummy) IPv6 application
which interacts with the IPv6 stack. It is, however, controlled by the test system via a message channel. Therefore,
another task of the UT isto convert the messages sent by the test system into concrete IPv6 interface calls and vice
versa. Thisallows afairly generic design and encoding of a protocol between the UT and the test system.

A UT may be implemented in the concrete implementation language used by the IUT which allows an easy integration
of the UT with the IUT. Asthe UT implementation is clearly SUT specific it is not provided as part of the TTCN-3
IPv6 test system. It is expected to be provided by the party which intends to use the test suite.

10.1 The UT in the IPv6 test system

In the test system the UT is represented in each test case by its own PTC. During the execution of atest casethisPTC
issues commands to interact with the upper tester in the SUT using messages or procedure calls. Although the I pv6 test
system does not mandate how a UT implements such an API invocation, it requires the UT to support the IPv6 UT
protocol.

The IPv6 UT protocol is used by IPv6 library test cases to communicate with the UT. It defines primitives which, for
example, indicate the start and end of atest case, reset the UT in case of test case errors and send or indicate the
reception of an |Pv6 packet. In order to be as independent of the upper IPv6 interface as possible, the protocol leaves
I Pv6 packet related information in encoded format.

The TTCN-3 type definitions for the Ipv6 UT protocol and the encoding of its primitives are discussed in more detail in.
IPv6 UT protocol messages are to be transported using UDP/Ipv4. The UDP port to be used for communication should
be 5080.

ETSI

24 ETSI TS 102 351 V1.1.1 (2004-09)

Annex A (informative):
A formal notation for expressing test purposes

A.l Introduction

A simple but formal notation has been developed for the expression of TPsin a consistent and structured form. This
notation provides structure through the use of defined keywords (see table 6) but also allows the TP writer considerable
freedom in the use of text between the keywords.

The notation allows the grouping of TPs (to provide the TSS). It provides header information for each TP and a
description of the TP. Line comments may be expressed using "/ / *. Comments that cover more than one line should be
enclosed by "/ *" and "*/".

Table 6: TP notation keywords

TP grouping keywords TP Body keywords
description accepts
group after
id and
title bef ore
cont ai ni ng
TP header keywords ensure
rc i gnor es
r ef i ndicating
title not
tp receives
id rejects
remai ns
sends
t hat
t hen
to
when
with

A.2 Grouping

The TSS (Test Suite Structure) is expressed using the group keyword. Groups may be nested to provide sub-grouping.
The body of the group (i.e. subsequent groups or TPs) should be enclosed in curly braces, i.e. { ... }.

Each group should have:
. an identifier (group id) as described in clause 9.2;
. along form of the identifier (title) as described in clause 9.2;
. ashort free text description of the test group (description).

Indentation may be used to indicate a sub group. But in cases of deep sub-grouping this should be avoided for
readability reasons.

ETSI

25 ETSI TS 102 351 V1.1.1 (2004-09)

In order to aid readability it is recommended that the end of the end of the group is followed by a comment that shows
the group name (identifier).

Example of one group and a sub group:

group id TP_RT

title Router

description Test Purposes for Router

{ group id TP_RT_PS
title Router(RT)/Provide | Pv6 Services(PS)
description Test Purposes for Provide |Pv6 Services
{ ... TPs or nore subgroups can go here ...
} // end TP_RT_PS

} // end TP_RT

A.3 TP Header

Each TP should begin with a header which contains a number of items of descriptive information about the TP with
each item introduced by a defined keyword but written in free text. The elements that should be included in the header
are:

. the TP Identifier (tp id):
the unique identifier of the TP as described in clause 9.4;
. the TP title (title):
free text descriptive title of the TP,
. areference to the Reguirements Catalogue (rc ref) :
identification of the relevant text in the base standard(s) where the requirement to be tested is specified;
. areference to the testing configuration (config ref):
identification of the predefined testing architecture which is applicable to the test.
Example TP header:

tp id TP_01_147 04 | Pv6Host
title Padl option

rc ref IltemO and Item1
config ref Config_RUT_2

A.4 TP body

The main body of the TP follows the header and it is here that the test itself is described. The TP iswritten from the
viewpoint of the IUT. The general form of aTP isas follows:

ensure that { /1 start of TP body
with { ...} /1 initial conditions
when { ... } /] tester activities
then { ... } /1 iut responses and verdict criteria
} /1 end of TP body

The when and then statements may be repeated, for example:

ensure that {
with { the iut in some initial state or condition }
when { tester does action 1 }
then { iut does response 1 }
when { tester does action 2 }
then { iut does response 2 and verdict criteria }

}

ETSI

26 ETSI TS 102 351 V1.1.1 (2004-09)

A.4.1 The with statement

The with statement expresses the initial state or condition of the IUT at which point the TP description begins. Note,
this does not define the steps, or actions, needed to reach this starting condition, only the condition itself.

Apart from free text, typical keywords that may appear in the condition are and, or, not. For example:

with { the IUT in idle state and port80 open }

A.4.2 The when statement

The when statement expresses some action, in most cases performed by the tester and observed by the IUT. Typically
thiswill be areceives statement (i.e. the IUT has received some stimulus) with a description of the |Pv6 header and
relevant fields (containing, indicating). Other typical keywords that may appear in the when statement are and, or,
not.

For example:
when { | UT receives Echo Request
cont ai ni ng Hop- by- Hop Opti ons Header
i ndi cating Header Ext Length field ZERO
and a PadN option

containing the Opt Data Len field set to 4
}

In cases where there is more than one test interface in the test configuration the keyword from can be added to the
receives. For example:

I UT receives Echo Request from Test Nodel

A.4.3 The then statement

The then statement expresses some response (usually by the IUT) to the when statement. For example,

then { 1UT sends the Echo Request }

In cases where there is more than one test interface in the test configuration the keyword to can be added to the sends.
For example:

then { RUT sends the Echo Request to Test Node2}
The keywords accepts, ignores, rej ects are other possible response to a received message. For example:
then { IUT rejects Echo Request }

The remains keyword can be used to express that the IUT does not change state or condition. For example:

then { IUT remains in the idle state }

Apart from free text, the keywords and, or, not may be used in athen statement. For example, the following is
equivalent to the two then statements above:

then { IUT rejects Echo Request

and remains in the idle state }

Finally, the keywords befor e and after can be used to express ordering, especially in the context of timers.
For example:

before T1 expires

after 15 seconds

ETSI

27 ETSI TS 102 351 V1.1.1 (2004-09)

Annex B (informative):
Example TTCN-3 library modules

B.1 Electronic annex, zip file with TTCN-3 code -

TTCN-3 library mdoules are contained in archive ts_102351v010101p0.zip which accompanies the present document.
They can be used in a TTCN-3 editor as examples.

ETSI

28 ETSI TS 102 351 V1.1.1 (2004-09)

Annex C (informative):
TTCN-3 type definitions and encoding for a UT protocol

The IPv6 UT protocol (UTP) primitives can be grouped into generic primitives as well as I pv6 specific primitives. The
following UTP messages are defined in the IPv6 test suite which can be found in the el ectronic attachment to annex B:

. UTP specific primitives:

- IPv6 Request (Utpl pv6Request);

- IPv6 Response (Utpl pv6Response);
. Generic primitives:

- Start Test Case request (UtpStartT CRequest);

UtpEndT CReguest
- UtpResetRequest
- UtpGenericResponse.

In 1Pv6 specific UTP messages, the application id field allows the test system to interact with multiple UTs or
applications with one UT. The use of these identifiers should start from 0. The command used in this message should
reflect actions to be taken from the perspective of atest case. In a successful case the return code in a response should
provide information about the state of an application inthe UT.

In the UTP the test system always acts as a client whereas the UT acts as a server. Therefore, UT protocol requests can
only be sent by the test system. UTP also requires that the test system pollsthe UT for received messages. It does so
using the "getPkt" command. The UT must respond to all generic request messages with "UtpGenericResponse”
messages. The Utpl p6Request must be answered by a " Utpl pv6Response” message.

The encoding of UT protocol messages has been designed to be as simple and humanly readable as possible in order to
simplify the analysis of communication between the test system and the UT. An encoded UT protocol message can be
thought of as a concatenation of various text as well as octet strings. Most of the stringsin a UT message are TTCN-3
values. TTCN-3 enumeration values are to be encoded using their name (without the "e " prefix), i.e. not their

integer value. Finally, user defined types and their fields are encoded using the prefix string specified for a type or type
field inthe UT protocol type definition.

Each string (no matter if it isa prefix for a TTCN-3 field, its string value, or an enumeration value) is encoded with one
octet specifying the length of the following string and then the string value in its native format, i.e. either an octet or text
string. Such an encoding of stringsis already used for strings by other IETF protocols, e.g. the DNS protocol [6]

clause 3.3.

EXAMPLE: TTCN-3 message (type see type definition above):

tenpl ate Ut pStart TCRequest mutpStart TC 001 : = {
testCaseld := 'TC 001
}

Corresponding encoding (length octets shown in \xhh format):

\ x12Ut p/ 1. 0/ St art TcReq\ x06TC_001

ETSI

29

ETSI TS 102 351 V1.1.1 (2004-09)

History

Document history

V111

September 2004

Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 The TTCN-3 Framework
	5 The IPv6 test development process
	5.1 Conformance testing methodology
	5.2 Interoperability testing methodology

	6 The Requirements Catalogue
	6.1 Entries in the Requirements Catalogue

	7 Developing test suites
	7.1 Test Suite Structure (TSS) and Test Purposes (TP)
	7.1.1 TSS
	7.1.2 TP Contents
	7.1.3 TP checklist
	7.1.4 Using the TP Language

	7.2 Test suite development
	7.2.1 TP function groups
	7.2.2 Test cases
	7.2.3 Test case selection
	7.2.4 Test suite parameterization

	7.3 Test description development

	8 The TTCN-3 library
	8.1 Library structure overview
	8.1.1 Data types and values
	8.1.2 Templates
	8.1.3 Test cases
	8.1.4 Functions
	8.1.4.1 Verdict handling functions
	8.1.4.2 Synchronization functions
	8.1.4.3 TC functions
	8.1.4.4 TP functions
	8.1.4.5 Other functions

	8.2 Adding modules to the library

	9 Naming conventions
	9.1 General guidelines
	9.2 Naming IPv6 test groups
	9.3 Naming IPv6 requirements
	9.4 Naming IPv6 TPs and TCs

	10 Specifying an upper tester
	10.1 The UT in the IPv6 test system

	Annex A (informative): A formal notation for expressing test purposes
	A.1 Introduction
	A.2 Grouping
	A.3 TP Header
	A.4 TP body
	A.4.1 The with statement
	A.4.2 The when statement
	A.4.3 The then statement

	Annex B (informative): Example TTCN-3 library modules
	B.1 Electronic annex, zip file with TTCN-3 code -

	Annex C (informative): TTCN-3 type definitions and encoding for a UT protocol
	History

