
 

 

 

 

 
ETSI TS 102 351 V1.1.1 (2004-09)

Technical Specification 

Methods for Testing and Specification (MTS);
IP Testing;

TTCN-3 IPv6 Test Specification Toolkit

 

 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 2  

 

 

 

Reference 
DTS/MTS-00092 

Keywords 
IP, interoperability, methodology; testing, TTCN 

ETSI 

650 Route des Lucioles 
F-06921 Sophia Antipolis Cedex - FRANCE 

 
Tel.: +33 4 92 94 42 00   Fax: +33 4 93 65 47 16 

 
Siret N° 348 623 562 00017 - NAF 742 C 

Association à but non lucratif enregistrée à la 
Sous-Préfecture de Grasse (06) N° 7803/88 

 

Important notice 

Individual copies of the present document can be downloaded from: 
http://www.etsi.org 

The present document may be made available in more than one electronic version or in print. In any case of existing or 
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). 

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive 
within ETSI Secretariat. 

Users of the present document should be aware that the document may be subject to revision or change of status. 
Information on the current status of this and other ETSI documents is available at 

http://portal.etsi.org/tb/status/status.asp 

If you find errors in the present document, please send your comment to one of the following services: 
http://portal.etsi.org/chaircor/ETSI_support.asp 

Copyright Notification 

No part may be reproduced except as authorized by written permission. 
The copyright and the foregoing restriction extend to reproduction in all media. 

 
© European Telecommunications Standards Institute 2004. 

All rights reserved. 
 

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. 
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. 

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp


 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 3  

Contents 

Intellectual Property Rights ................................................................................................................................5 

Foreword.............................................................................................................................................................5 

1 Scope ........................................................................................................................................................6 

2 References ................................................................................................................................................6 

3 Definitions and abbreviations...................................................................................................................7 
3.1 Definitions..........................................................................................................................................................7 
3.2 Abbreviations .....................................................................................................................................................7 

4 The TTCN-3 Framework..........................................................................................................................8 

5 The IPv6 test development process ..........................................................................................................8 
5.1 Conformance testing methodology...................................................................................................................10 
5.2 Interoperability testing methodology ...............................................................................................................10 

6 The Requirements Catalogue .................................................................................................................10 
6.1 Entries in the Requirements Catalogue ............................................................................................................11 

7 Developing test suites.............................................................................................................................12 
7.1 Test Suite Structure (TSS) and Test Purposes (TP)..........................................................................................12 
7.1.1 TSS .............................................................................................................................................................12 
7.1.2 TP Contents ................................................................................................................................................12 
7.1.3 TP checklist ................................................................................................................................................12 
7.1.4 Using the TP Language...............................................................................................................................13 
7.2 Test suite development .....................................................................................................................................13 
7.2.1 TP function groups .....................................................................................................................................13 
7.2.2 Test cases ....................................................................................................................................................14 
7.2.3 Test case selection ......................................................................................................................................14 
7.2.4 Test suite parameterization .........................................................................................................................14 
7.3 Test description development...........................................................................................................................15 

8 The TTCN-3 library ...............................................................................................................................15 
8.1 Library structure overview ...............................................................................................................................15 
8.1.1 Data types and values .................................................................................................................................16 
8.1.2 Templates....................................................................................................................................................17 
8.1.3 Test cases ....................................................................................................................................................18 
8.1.4 Functions ....................................................................................................................................................18 
8.1.4.1 Verdict handling functions ....................................................................................................................18 
8.1.4.2 Synchronization functions.....................................................................................................................18 
8.1.4.3 TC functions..........................................................................................................................................19 
8.1.4.4 TP functions ..........................................................................................................................................19 
8.1.4.5 Other functions......................................................................................................................................20 
8.2 Adding modules to the library..........................................................................................................................20 

9 Naming conventions...............................................................................................................................20 
9.1 General guidelines............................................................................................................................................20 
9.2 Naming IPv6 test groups ..................................................................................................................................21 
9.3 Naming IPv6 requirements...............................................................................................................................22 
9.4 Naming IPv6 TPs and TCs...............................................................................................................................22 

10 Specifying an upper tester ......................................................................................................................22 
10.1 The UT in the IPv6 test system ........................................................................................................................23 

Annex A (informative): A formal notation for expressing test purposes ..........................................24 

A.1 Introduction ............................................................................................................................................24 

A.2 Grouping.................................................................................................................................................24 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 4  

A.3 TP Header...............................................................................................................................................25 

A.4 TP body ..................................................................................................................................................25 
A.4.1 The with statement...........................................................................................................................................26 
A.4.2 The when statement .........................................................................................................................................26 
A.4.3 The then statement...........................................................................................................................................26 

Annex B (informative): Example TTCN-3 library modules...............................................................27 

B.1 Electronic annex, zip file with TTCN-3 code - ......................................................................................27 

Annex C (informative): TTCN-3 type definitions and encoding for a UT protocol .........................28 

History ..............................................................................................................................................................29 
 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 5  

Intellectual Property Rights 
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information 
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found 
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in 
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web 
server (http://webapp.etsi.org/IPR/home.asp). 

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee 
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web 
server) which are, or may be, or may become, essential to the present document. 

Foreword 
This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and 
Specification (MTS). 

http://webapp.etsi.org/IPR/home.asp


 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 6  

1 Scope 
The purpose of the present document is to provide broad guidelines on the use of a common method for developing test 
specifications for IPv6. This method is applicable to all IPv6 categories including the core specification, mobility, 
security and transitioning to IPv6 from IPv4. 

The underlying method is based on the methodologies specified in ISO/IEC 9646-1 [4] for conformance tests and 
ETSI TS 102 237-1 [1] for interoperability tests. It provides guidance on the development and use of the following key 
elements of the method: 

- a Requirements Catalogue (RC); 

- a Test Suite Structure (TSS) and Test Purposes (TP); 

- Test Descriptions (TD) - interoperability; 

- a TTCN-3 library of data types and values, templates and functions; 

- an Abstract Test Suite (ATS) - conformance. 

The method also offers guidance on a naming convention and other style-related issues. 

Although the present document has been developed primarily for use in the testing of IPv6 standards, it could equally 
be used in other areas of protocol test specification. 

2 References 
The following documents contain provisions which, through reference in this text, constitute provisions of the present 
document. 

•  References are either specific (identified by date of publication and/or edition number or version number) or 
non-specific. 

•  For a specific reference, subsequent revisions do not apply. 

•  For a non-specific reference, the latest version applies. 

Referenced documents which are not found to be publicly available in the expected location might be found at 
http://docbox.etsi.org/Reference. 

[1] ETSI TS 102 237-1 (2003): "Telecommunications and Internet Protocol Harmonization Over 
Networks (TIPHON) Release 4; Interoperability test methods and approaches; Part 1: Generic 
approach to interoperability testing". 

[2] ETSI EG 202 106 (2003): "Methods for Testing and Specification (MTS); Guidelines for the use 
of formal SDL as a descriptive tool". 

[3] ETSI ES 201 873-6 (2003): "Methods for Testing and Specification (MTS); The Testing and Test 
Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)". 

[4] ISO/IEC 9646-1 (1992): "Information Technology - Open Systems Interconnection - Conformance 
Testing Methodology and Framework - Part 1: General concepts". 

[5] IETF RFC 2460 (1998): "Internet Protocol, Version 6 (IPv6) Specification". 

[6] IETF RFC 1035 (1997): "Domain names - implementation and specification". 

http://docbox.etsi.org/Reference


 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 7  

3 Definitions and abbreviations 

3.1 Definitions 
For the purposes of the present document, the following terms and definitions apply: 

behavioural function: a TTCN-3 function which specifies actions which result in the sending of messages to one or 
more observed interface 

computational function: a TTCN-3 function which specifies actions which modifies data values but does not result in 
the sending of messages to one or more observed interface 

Equipment Under Test (EUT): grouping of one or more devices which has not been previously shown to interoperate 
with previously Qualified Equipment (QE) 

Qualified Equipment (QE): grouping of one or more devices that has been shown, by rigorous and well-defined 
testing, to interoperate with other equipment 

NOTE: Once an EUT has been successfully tested against a QE, it may be considered to be a QE, itself. 

3.2 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

3GPP 3rd Generation mobile Partnership Project 
API Application Programming Interface 
ATS Abstract Test Suite 
EUT Equipment Under Test 
IETF Internet Engineering Task Force 
IFS Interoperable Functions Statement 
IPv4 Internet Protocol version 4 
IPv6 Internet Protocol version 6 
IUT Implementation Under Test 
MTC Main Test Component 
NGN Next Generation Network 
PICS Protocol Implementation Conformance Statement 
PTC Parallel Test Component 
QE Qualified Equipment 
RC Requirements Catalogue 
RFC Request For Comments (IETF terminology for a draft standard) 
RQ Requirement 
SUT System Under Test 
TISPAN ETSI technical body with responsibility for NGN standardization 
TC Test Case 
TCI TTCN-3 Control Interface 
TD Test Description 
TE Test Equipment 
TP Test Purpose 
TSS Test Suite Structure 
TTCN-3 Testing and Test Control Notation edition 3 
UDP User Datagram Protocol 
UT Upper Tester 
UTP Upper Tester Protocol 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 8  

4 The TTCN-3 Framework 
ETSI test specifications are usually developed for a single base protocol standard or for a coherent set of standards. As 
such, it is possible to follow the methodology specified for conformance test development in ISO/IEC 9646-1 [4] 
without much difficulty. However, the requirements of IPv6 are distributed across a wide range of documents and a 
different approach to test development is necessary. It is this approach that is referred to as the "TTCN-3 Framework". 

As its name implies, the framework is oriented towards the production of Abstract Test Suites (ATS) in the Testing and 
Test Control Notation edition 3 (TTCN-3). The TTCN-3 Framework comprises: 

•  a documentation structure; 

- catalogue of requirements; 

- Test Suite Structure (TSS); 

- Test Purposes (TP); 

� conformance; 

� interoperability; 

•  Abstract Test Suite (ATS); 

- Test Cases (TC) in TTCN-3 for conformance tests; 

- Test Descriptions (TD) in tabulated English for interoperability tests; 

•  library of TTCN-3 building blocks; 

- data types and values; 

- templates; 

- general computational functions; 

- TP functions (see clause 7.2.1); 

•  a methodology linking the individual documentation, library and ATS elements together; 

- style guidelines and examples; 

- naming conventions; 

- guidelines on the use and extension of the TTCN-3 library; 

- a structured notation for TPs. 

The TTCN-3 Framework, particularly the methodology, draws heavily on the tried and tested ISO/IEC 9646-1 [4] but 
modifies it to suit the particular case of IPv6 testing. It also incorporates guidelines on interoperability testing taken 
from TS 102 237-1 [1]. 

5 The IPv6 test development process 
The process to be followed when developing IPv6 test specifications is shown in figure 1. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 9  

 

Figure 1: IPv6 test development process 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 10 

The process begins with the analysis of the IETF RFCs related to IPv6 and a range of secondary inputs which include: 

•  current industry practice; 

•  existing test documentation from the IPv6 Forum and other established sources; 

•  specifications related to the use of IPv6 in 3rd Generation mobile networks. 

The result of this analysis is the identification and classification of a full range of IPv6 requirements which is recorded 
in the Requirements Catalogue and used as the basis for both conformance and interoperability test specifications. 

5.1 Conformance testing methodology 
Any conformance test specification should be produced following the methodology described in ISO/IEC 9646-1 [4]. In 
summary, this methodology begins with the collation and categorization of the requirements to be tested into a tabular 
form which is normally referred to as the "Protocol Implementation Conformance Statement" (PICS). Each PICS relates 
to a specific protocol standard. As the requirements of IPv6 are distributed across a large number of documents, there 
would be very little benefit in producing a PICS for each document. Consequently, the IPv6 requirements will be 
collected together and categorized in a single document, the Requirements Catalogue. 

For each requirement in the catalogue, one or more tests should be identified and classified into a number of groups 
which will provide a structure to the overall test suite (TSS). A brief Test Purpose (TP) should then be written for each 
identified test and this should make it clear what is to be tested but not how this should be done. Finally, a detailed Test 
Case (TC) is written for each TP. In the interests of test automation, TCs are usually combined into an Abstract Test 
Suite (ATS) using a specific testing language such as TTCN-3. 

5.2 Interoperability testing methodology 
For a certification (or branding or logo) scheme to be meaningful, it is necessary that interoperability testing is carried 
out in addition to conformance testing and that this is done in accordance with a comprehensive and structured suite of 
tests. In the context of the present document, it is exactly this type of testing which is referred to as "Interoperability 
Testing". The purpose of interoperability testing is to prove that the end-to-end functionality between (at least) two 
communicating systems is as required by the standard(s) on which those systems are based. A methodology for 
developing such interoperability test specification is described in TS 102 237-1 [1] and this should be used as a guide 
when developing IPv6 test suites. This methodology is based extensively on ISO/IEC 9646-1 [4] but with some 
modifications to make it more suitable for interoperability testing. 

In TS 102 237-1 [1], the Interoperable Functions Statement (IFS) replaces the PICS and is a statement of which 
functions supported by the protocol have been implemented. However, in this framework these functions should be 
clearly identified in the Requirements Catalogue. 

6 The Requirements Catalogue 
The requirements which collectively specify and characterize IPv6 are taken from a wide range of specifications and 
other documentation. Building a coherent set of test specifications from these disperse requirements can be made 
simpler by gathering the requirements together into a single catalogue. The Requirements Catalogue lists IPv6 
requirements from the various sources and organises them in a tree structure. 

An example of the Requirements Catalogue in a tabulated form is shown in table 1 and table 2. The root of the 
catalogue consists of the base IPv6 functions/requirements (table 1), each of which can be specified further in 
sub-tables. The example in table 1 indicates that there is a requirement "provide something" which is elaborated in 
table 2. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 11 

Table 1: Provide IPv6 Services (example) 

Requirement Group: 
Root of IPv6 Requirements 

Source 
Reference 

Requirement  
Type 

IPv6 Label Requirement 
Dependencies  

1 Provide something  RFC XYZ, 1.7 MUST MUST  None  

2 [Provide something else] 
(table 2) 

  N/A None 

3 Limit the packet's 
something RFC XYZ, 3.3 MAY MUST None 

4 Provide the packet's 
something RFC XYZ, 3.4 MUST MUST if R3 then 

MUST else N/A 

5 Do something completely 
different  

v6F 1234, 22.1 MUST N/A None 

... ... ... ... ... ... 
 

Table 2: Provide something (example) 

Requirement Group: 
Provide something else 

Source 
Reference 

Requirement  
Type 

IPv6 Label Requirement 
Dependencies 

32 Provide sub-something RFC XYZ, 1.8 SHALL MUST None 

33 Provide sub-something 
else RFC XYZ, 2.3  SHOULD N/A None 

34 Provide another 
sub-something else RFC XYZ, 3.4 MAY MUST None 

... ... ... ... ... ... 
 

NOTE 1: This information may be presented in various forms, ideally as hyperlinked web pages. The intention of 
tables 1 and 2 is to show the extent of the information that needs to be collected. 

NOTE 2: The grey columns indicate information that is supplied by a specific organization (the IPv6 Forum in this 
example) and is not supplied during the development of the test specifications as defined in this 
framework. 

6.1 Entries in the Requirements Catalogue 
For each requirement in the catalogue the following information should be present: 

•  requirement group which is either the root of the Requirements Catalogue or a sub group (another table) of 
requirements; 

•  a requirement identification number (clause 9.3). For easy use of the Requirements Catalogue, a sequential 
numbering system should be used in the table with a separate and complete cross-reference list linking the 
sequential numbers in the tables and the requirement identification numbers; 

•  the requirement in text: 

- a requirement in square brackets [] indicates a functional category created for structuring purposes. The 
category may not be specifically mentioned in any of the sources and is derived during development of 
the catalogue; 

•  reference to the source of the requirement (for example, an RFC number, or industry practice as may be 
defined in documentation specific to the IPv6 Forum or 3GPP). The reference should be precise and 
unambiguous, for example "RFC XYZ, 1.7" indicates that the reference text is from clause 1.7 of the RFC that 
is this requirement's source. 

•  the type of requirement (MUST, SHALL, SHOULD, MAY) which is useful in determining whether a 
requirement is optional or mandatory: 

- the keyword N/A is used to indicate that a requirement is not applicable; 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 12 

- some requirements may be "negative" requirements, for example "... MUST not do something ...". In 
such cases the requirement type should be indicated as MUST_NOT (SHALL_NOT, SHOULD_NOT, 
MAY_NOT); 

- for various reasons the language used in a particular standard may not always follow the relevant drafting 
rules and words such as "can/ought/will/could/etc." may be used to express a requirement. In such cases, 
the Requirement Type is assumed from the text and qualified with the word 'implied' in parentheses, for 
example MUST (implied); 

•  the organization requirement type. To be filled in by a particular organization which may wish to redefine the 
type of a requirement by, for example, stating a MAY requirement to be a MUST, or excluding a particular 
requirement. Typical cases of this would be the needs of the IPv6 Forum (v6Ready label requirement), 3GPP 
or ETSI TISPAN (NGN); 

•  the requirement dependencies. In many cases the implementation of one requirement will depend on the 
implementation of another. For example, a requirement of the kind "... An IPv6 host MAY support <R3>. If it 
does then the host MUST also support <R4>...". These dependencies are described as a Boolean expression 
(similar to those used in a PICS). In table 1 for R4 this is written as "If R3 then MUST else N/A". These 
Boolean expressions are linked to Boolean module parameters that is used in the control part of the relevant 
TTCN-3 module to switch in or out individual test cases and/or groups of test cases. Note that changes to the 
Requirement Type as stated in the Organisation Requirement Type column may impact on the corresponding 
entries in the Dependencies column. 

7 Developing test suites 

7.1 Test Suite Structure (TSS) and Test Purposes (TP) 

7.1.1 TSS 

TSS groups should be chosen according to natural divisions in the base specification(s) and/or the architecture of the 
testing configuration. Examples might be, "Normal behaviour" and "Exceptional behaviour" or "Uni-cast operations" 
and "Multi-cast operations". 

Interoperability test groups can be identified, for instance, according to the functionalities specified in the Requirements 
Catalogue. 

7.1.2 TP Contents 

A Test Purpose (TP) should be written for each potential test of an IPv6 requirement remembering that a requirement 
may need more than one TP to ensure that it is fully tested. As well as describing what is to be tested, the TP should 
identify the initial conditions to be established before testing can take place, the required status of the Implementation 
Under Test (IUT) or Equipment Under Test (EUT) from which testing can proceed and the criteria upon which verdicts 
can be assigned. 

The contents of a TP should be limited to a description of what is to be tested rather than how that testing is to be 
carried out. 

7.1.3 TP checklist  

The TP checklist maps a specific requirement to one or more Test Purposes for that requirement. The numbering and 
naming conventions of clause 9 ensure consistency between requirements numbering and Test Purpose numbering. This 
checklist (table 3) serves as a useful summary as well as acting as a checklist for a particular IUT to indicate what 
requirements are supported. The IUT Support column is filled in at the time of testing (hence shown in grey). 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 13 

Table 3: TP checklist 

Organization: IPv6 Label 
Requirement TP IUT Support 

1 TP1_1, TP1_2 Yes 
2 TP2 No 
3 TP3_1, TP3_2, TP3_3 Yes 
... ... ... 

 

7.1.4 Using the TP Language 

There is considerable benefit to be gained by having all TPs written in a similar way. Readers of the TPs will find them 
easier to understand and harder to misinterpret. With this in mind, a simple, structured specification language has been 
developed for the expression of TPs. This is described fully in annex A. The use of this notation simplifies the 
identification of initial conditions, preamble, test description and postamble. Examples of the use of the language to 
express TPs are shown below. 

EXAMPLE 1: 

tp id TP_40147 
title aligning PadN option 
rc ref RC_61255 
config ref CF_01 
ensure that  
 when { IUT receives Echo Request from TN1 
   containing Hop-by-Hop Options Header 
   indicating Header Ext Length field ZERO 
    and PadN option containing Opt Data Len field set to 4 
         and Option Data aligning the Hop-by-Hop Options Header 
          to a multiple of 8 octets } 
 then { IUT sends Echo Request to TN2} 
 

EXAMPLE 2: 

tp id TP_40147 
title not aligning PadN option 
RC ref RC_61256 
config ref CF_01 
ensure that  
 when { RUT receives invalid Echo Request from TN1 
   containing Hop-by-Hop Options Header 
   indicating Header Ext Length field ZERO 
     and PadN option containing Opt Data Len field set to 3 
           and Option Data not aligning the Hop-by-Hop 
            Options Header to a multiple of 8 octets } 
 then { RUT sends PARAMETER PROBLEM to TN1 
    containing the Code field indicating code value 2 
     and the Pointer field indicating pointer value } 
 

7.2 Test suite development 

7.2.1 TP function groups 

For each TP, a TP function group is specified in TTCN-3 and this should contain one function per test component. 
These functions should not be complete TCs with preambles and postambles but should contain only the TTCN-3 
necessary to carry out the actions that the TP requires. A TP function should not set the test component verdict but 
should return a value which the calling TC can use to determine the verdict. Each of these TP functions will be entered 
into the project TTCN-3 library for future use in the development of TCs. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 14 

7.2.2 Test cases 

A TC can be developed in TTCN-3 from the appropriate TP function(s) by adding: 

•  a preamble: 

- the actions required to place the IUT or EUT into the status required by the TP function; 

•  synchronization code: 

- the actions required to ensure that the main test component and any parallel test components are 
established in a known, coordinated status prior to the start of the test itself; 

•  the evaluation of a final verdict: 

an assessment of the overall performance of the IUT or EUT based on information returned from TP Function calls, to 
determine whether it can be considered to have passed the test or not; 

•  a postamble: 

 the actions required to return the IUT or EUT to a known quiescent state after completing the test. 

7.2.3 Test case selection 

The conformance test suite is a TTCN-3 module comprising all the test cases relevant to a particular area of IPv6, for 
example, Core IPv6. This set of test cases may be subset by the requirement needs of a particular organization  
(e.g. IPv6 Forum or 3GPP) as defined in the requirements catalogue for the organization. 

In the control part of the test suite module each Test case should be preceded by a selection statement as shown in the 
following example: 

If (RQ_01_407==true){ 
execute (f_TC_01_407_35_IPv6Router()) 
    } 
 

In this example RQ_01_407 is a module parameter of type Boolean whose value is set by the entries in the IUT column 
of table 3 (Yes≡true, No≡false). 

7.2.4 Test suite parameterization 

It is often necessary to parameterise a test suite so that values not known at the time of writing the test cases can be used 
in testing. These values may depend on the IUT or the test system on which the test suite is being run. 

NOTE: Test suite parameter values correspond to values normally found in a PICS or PIXIT. 

Table 4 shows an example of how test suite parameters could be documented. The IUT Value column is completed at 
the time of testing. 

Table 4: Module (test suite) parameters 

Organization: IPv6 Label 

Parameter Name Description Reference Type IUT Value 
R_HOST IP address for remote 

host 
N/A IPAddress  

T1 Response timer RFC XYZ, 3.2 integer  
...     
 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 15 

7.3 Test description development 
Test Descriptions (TDs) specify the detailed steps that must be followed in order to achieve the stated purpose of each 
interoperability test. These steps should be specified in a clear and unambiguous way but without placing unreasonable 
restrictions on how the step is performed. TDs written in a structured and tabulated natural language are ideal when the 
tests themselves are to be performed manually. If, however, tests are to be automated, test cases should be written in 
TTCN-3. The development of TTCN-3 test cases does not mean that TDs should not also be produced because they 
have significant value as higher-level designs of the test cases. 

NOTE: TDs should only be used in the specification of interoperability tests and not for conformance tests. 

8 The TTCN-3 library 
In order to facilitate the rapid and consistent production of both abstract and executable test suites, a library of reusable 
TTCN-3 elements will be maintained. This library will be made freely available so that manufacturers, operators, 
testing organizations and other standards bodies can make use of it in constructing IPv6 test suites specific to their 
needs. 

Once the library is established, facilities will be introduced for the controlled addition of new TTCN-3 elements and the 
modification of existing ones. 

NOTE: The following clauses specify a number of rules as strong recommendations ("should") because they are 
considered to be based on good test programming practice. However, any TTCN-3 segments submitted 
for inclusion in the IPv6 TTCN-3 Library will be expected to comply with these recommendations as if 
they were mandatory. 

8.1 Library structure overview 
Although TTCN-3 does not mandate the use of any structure in a library, the elements will be grouped logically into a 
number of modules, thus: 

•  types and values which include: 

- data elements; 

- ports; 

- components; 

- module parameters; 

- templates; 

•  functions: 

- verdict handling functions; 

- synchronization functions; 

- test case functions; 

- TP functions; 

- other functions. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 16 

8.1.1 Data types and values 

Commonly used subtypes for fields (e.g. subtypes for different encoding of integer, and octetstring values) are held 
within a single module. The TTCN-3 encode attribute is used here to provide additional information to codecs because 
the TCI [3] currently does not support access to subtyping information. This module also contains IPv6 library module 
parameter definitions. 

type UInt2 integer (0..3) with { encode "2 bits" } 
type Octet2 octetstring length(2) with { encode "2 octets" } 
 

Types for data elements are organized in one module per RFC. A special role plays the root RFC which imports all 
other RFC modules. The latter also defines the union types for all IP headers and payloads. In general the type and 
value specification is modularized as follows: 

•  Common Library (CommonLib_TypesAndValues): 

 Useful types which can be used in other projects; 

 Example: CommonLib_TypesAndValues.UInt8 

NOTE: Throughout the present document, examples indicate where relevant TTCN-3 code can be found in the 
electronic attachment in annex B 

•  IPv6 Library (Ipv6Lib_Common_TypesAndValues): 

 Types that are used by more than one RFC are defined here; 

 Example: Ipv6Lib_Common_TypesAndValues.MtuOption 

•  PIXIT parameters and Constants which are useful for multiple RFCs are grouped and defined here; 

 Example: Ipv6Lib_Common_TypesAndValues.PX_LLA_ADDR_TN 

•  RFC 2460 [5] Root Library (Ipv6Lib_Rfc2460Root_TypesAndValues): 

 models the IPv6 packet and therefore imports all the RFC type modules 

•  RFC-Specific Library (Rfc_Specific_TypesAndValues): 

- Each RFC module models a specific RFC; 

EXAMPLE 1: Ipv6Lib_Rfc2461NeighborDiscovery_TypesAndValues 

- Each RFC module should only import the Common Library and the IPv6 Lib; 

- RFC specific PIXIT parameters and Constants should be grouped and defined here. 

The rules used to define the types in each module are: 

•  If an RFC modifies an information element of another RFC then a separate type should be created in the RFC 
modules; 

EXAMPLE 2: Ipv6Lib_Rfc2461NeighborDiscovery_TypesAndValues.PrefixInfo 
and Ipv6Lib_RfcXXXXMipv6_TypesAndValues.MipPrefixInfo 

•  If an RFC module needs to use a type which is already defined in another RFC module then this type should 
be moved to the IPv6 Library; 

EXAMPLE 3: Ipv6Lib_Common_TypesAndValues.SrcLinkLayerAddress used in 
Ipv6Lib_Rfc2461NeighborDiscovery_TypesAndValues and 
Ipv6Lib_RfcXXXXMipv6_TypesAndValues 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 17 

•  Any field of basic type in a user defined type should use the subtypes defined in the Common Library module; 

EXAMPLE 4: Ipv6Lib_Rfc2894RouterRenumbering_TypesAndValues.RrMatchPrefix 

•  Field names of user defined types as well as type names should not be abbreviated but be written in full; 

•  List type identifiers should use the postfix "List". They should use length restrictions in their type definition, 
e.g. a lower bound of one list element; 

•  IPv6 packet structure is defined in RFCs using tables in which the encoding is specified. In some cases these 
tables allow a group of information elements to occur in arbitrary order. Here the following approaches should 
be taken in deriving their type structure: 

•  If this group consists only of information elements which can occur only once then a set type should be used to 
model that group. Elements which are not required in all packets should be reflected as optional set fields; 

EXAMPLE 5: Ipv6Lib_Rfc2461NeighborDiscovery_TypesAndValues.RtAdvOptions 

If some or all information elements in a group are able to occur more than once consecutively in a packet then a set type 
should also be used to model the group. List types should model set fields which can occur multiple times; 

EXAMPLE 6: Ipv6Lib_Rfc2461NeighborDiscovery_TypesAndValues.PrefixInfoList 

If the group allows some of its informational elements to occur more than once but in any order then a set of union type 
structure should be used. This type structure should also be used to model frequently extended groups such as IP 
headers and IP packet payload. 

EXAMPLE 7: Ipv6Lib_Rfc2460Root_TypesAndValues.ExtensionHeaderList 

Component and port types are specified in a separate module. The following rules apply to component types: 

•  There should be one general component type per protocol. This type is intended for use in the runs on 
statement of functions which define behaviour that can be used in any test component, irrespective of its role 
in the test case; 

EXAMPLE 8: CommonLib_Synchronization.MtcComp 

•  There may be additional component definitions for specific roles. These should take the definitions of the 
general type as a basis and may extend them with additional port, timer, or variable definitions. These types 
should be used in the runs on statement of functions which define behaviour which can only make sense in the 
context of a specific role, e.g. in a test case function. 

EXAMPLE 9: Ipv6Ats_Core_TestSystem.Master. 

8.1.2 Templates 

Conceptually, template definitions follow the same RFC based modularization as the types for data elements. The 
following rules apply to template specification: 

•  Templates should be identified with names rather than numbers; 

•  Templates should not modify other modified templates. Base templates which are modified must be identified 
in their naming; 

•  Templates should be specified separately for use in sending and receiving operations. Postfixes (clause 9) 
should be appended to clarify their use; 

EXAMPLE: Ipv6Lib_Rfc2463Icmpv6_Templates.m_echoRequest_noData_snd 
and Ipv6Lib_Rfc2463Icmpv6_Templates.m_echoReply_noData_rcv 

•  Template definitions should avoid using matching attributes such as "*" or "?" for complete structured values, 
e.g. record or set of values; 

•  PIXIT parameter values (table 4) should be passed as parameters into templates. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 18 

8.1.3 Test cases 

Every test case should be selectable by having a test case selection function (see clause 7.2.3). This applies even to 
those test cases that test mandatory requirements from the base specification. 

Where the test configuration involves more than one test component, the test case is coordinated by the MTC which: 

•  establishes the test configuration by creating, starting, mapping and connecting PTCs; 

•  starts the TC Function of each PTC; 

•  synchronizes the PTCs; 

•  shuts down the test configuration by unmapping and disconnecting PTCs. 

If the test configuration involves only one test component, the test case is implemented by the MTC as a TC Function 
which also maps and unmaps required ports. 

8.1.4 Functions 

The IPv6 library differentiates between synchronization functions, verdict handling functions, TC functions, TP 
functions and other functions. Each type of function is implemented in a separate module, although there may be 
multiple modules for each function type. As an example, TP functions related to IPv6 core package could be 
implemented in a different module from the TP functions related to IPv6 security. The following general rules apply: 

•  Functions should use the runs on statement wherever this is possible; 

•  Each function should provide a return value. It is recommended to use the return value enumeration defined in 
the Common Library module; 

EXAMPLE: CommonLib_TypesAndValues.FncRetCode 

•  If a selection switch is used then the associated if statement body should contain only a function call; 

•  The stop statement should be used with care in functions (controlled test component shutdown should be 
always insured). 

8.1.4.1 Verdict handling functions 

The following guidelines apply to functions which handle verdicts: 

•  Test verdict functions should only be used in the TC function or in the test case itself; 

•  Test verdict functions use the return value from a function to determine a test verdict. 

8.1.4.2 Synchronization functions 

The following guidelines apply to functions handling the synchronization of multiple, parallel test components: 

•  Synchronization should be invoked by the MTC at least after the preamble and before the postamble. The 
MTC may also invoke synchronization at other appropriate times; 

•  A PTC should synchronize after setting a verdict. This is to ensure that the verdict is always set prior to a PTC 
shutdown; 

•  Synchronization should use "named" synchronization as implemented in the ETSI TTCN-3 synchronization 
common library module: 

- Named synchronization uses a different synchronization message for each synchronization in order to 
avoid confusion where multiple synchronizations are required. The message is constructed from a 
synchronization string (chosen by the TTCN writer) concatenated with the string "-READY". 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 19 

•  Synchronization of test termination should use the stop message which is the character string "STOP"; 

•  To terminate test execution a PTC should send the stop message to the MTC and wait for the corresponding 
STOP-notification from the MTC; 

•  If an MTC receives the stop message then it should send stop messages to all PTCs; 

•  To terminate test execution an MTC should send the stop message to all PTCs and wait for them to cease 
execution; 

•  If a PTC receives the stop message then it should execute the appropriate postamble. This could be 
implemented as default behaviour. As this notification may occur at any point of the PTC execution, the 
postamble should take its current state into account. 

8.1.4.3 TC functions 

The following guidelines apply to TC functions: 

•  TC Functions should only be necessary where there is more than one test component in the test architecture; 

•  Each PTC should have one TC Function defined for it; 

•  A TC Function is invoked in the "start test component" operation of a test case; 

•  TC Functions should be grouped with their associated test case; 

•  A TC Function should implement behaviour by invoking other functions rather than by expressing it directly. 
Any behaviour implemented directly in a TC Function would not be reusable in other test cases or functions; 

•  The name of a TC Function should include the role as well as the test case identifier as shown in the following 
example: 

- f_TC_01_051_12_Ipv6Host 

8.1.4.4 TP functions 

The following guidelines apply to TP functions: 

•  A TP Function should implement the test purpose for one component only; 

•  If there is more than one test component identified in the architecture associated with a TP, there should be one 
TP function for each of these components; 

•  If there is only one test component identified in the test architecture, there should be only one TP function for 
each TP; 

•  The name of a TP function should include the role as well as the test purpose identifier as shown in the 
following example: 

- f_TP_01_051_12_Ipv6Host(); 

•  A TP function should not call other behavioural functions although computational functions can be called; 

•  TP functions should contain neither invocation nor implementation of test configuration management, 
preamble, or postamble aspects; 

•  A TP function should not set a verdict but use the return value to pass information with which the calling TC 
can determine a verdict. This allows the reuse of TP functions in preambles or postambles. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 20 

8.1.4.5 Other functions 

Other function types should be collected into modules using grouping criteria appropriate to the particular application or 
project. Examples of such functions include test configuration management, preambles, postambles and algorithms.  

The following guidelines apply to functions in this category: 

•  Other functions should not set verdicts but should use return values in the same way as TP functions; 

•  Other functions should never call the stop operation as this prevents execution of the postamble by TC 
functions; 

•  Other functions may call TP functions if they match the requirements of a preamble or postamble. 

8.2 Adding modules to the library 
Users or organizations may submit their own modules for addition to the ETSI IPv6 TTCN-3 module library. Such 
modules should be submitted to ETSI Technical Committee MTS for review. Details of the submission process can be 
obtained from the ETSI Secretariat at mtssupport@etsi.org. 

9 Naming conventions 

9.1 General guidelines 
The IPv6 TTCN-3 library will be publicly available for test developers to use and, in a controlled way, extend. It is, 
therefore, desirable to specify a naming convention to cover each of the TTCN-3 elements which require an identifier.  

The naming convention is based on the following underlying principles: 

•  when constructing meaningful identifiers, the general guidelines specified for naming in clause 6 of 
EG 202 106 [2] should be followed. 

•  in most cases, identifiers should be prefixed with a short alphabetic string (specified in table 5) indicating the 
type of TTCN-3 element it represents; 

•  suffixes should not be used except in those specific cases identified in table 5; 

•  prefixes and suffixes should be separated from the body of the identifier with an underscore ("_"): 

EXAMPLES: c_sixteen, t_wait_max; 

•  only module names, data type names and module parameters should begin with an upper-case letter. All other 
names (i.e. the part of the identifier following the prefix) should begin with a lower-case letter: 

•  the start of second and subsequent words in an identifier should be indicated by capitalizing the first character. 
Underscores should not be used for this purpose: 

EXAMPLE 2: f_authenticateUser; 

Table 5 specifies the naming guidelines for each element of the TTCN-3 language indicating the recommended prefix, 
suffixes (if any) and capitalization. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 21 

Table 5: IPv6 TTCN-3 naming convention 

Language element Naming convention Prefix Suffix Example Notes 
Module Use upper-case initial letter none none IPv6Templates  
TSS grouping Use all upper-case letters as 

specified in clause 9.2 
none none TP_RT_PS_TR  

Item group within a 
module 

Use lower-case initial letter none none messageGroup  

Data type Use upper-case initial letter none none SetupContents  
Data template Use lower-case initial letter m_ _snd 

_rcv 
m_setupInit_snd 
m_setupBasic_rcv 

Notes 1 
and 2 

Port instance Use lower-case initial letter none none signallingPort  
Test component ref Use lower-case initial letter none none userTerminal  
Signature Use lower-case initial letter s_ none s_callSignature  
External function Use lower-case initial letter xf_ none xf_calculateLength()  
Constant Use lower-case initial letter c_ none c_maxRetransmission  
Function Use lower-case initial letter f_ none f_authentication() Note 6 
Altstep Use lower-case initial letter a_ none a_receiveSetup()  
Altstep (Default) Use lower-case initial letter d_ none d_receiveOtherMessages()  
Test case Use numbering as specified in 

clause 9.4 
TC_ none TC01_009_47  

Variable Use lower-case initial letter v_ _gbl v_macId 
v_systemName_gbl 

Note 3 

Timer Use lower-case initial letter t_ _min 
_max 

t_wait 
t_auth_min 

Note 4 

Module parameter Use all upper case letters none none PX_MAC_ID Note 5 
External constant Use lower-case initial letter xc_ none xc_macId  
Parameterization Use lower-case initial letter p_ none p_macId  
Enumerated Value Use lower-case initial letter e_ none e_synCpk  
NOTE 1: If different templates based on the same types are introduced, the name part (not prefix or suffix) of each 

identifier should give further information about the template's purpose (e.g. m_setupInit_snd, 
m_setupBcapFax_snd). 

NOTE 2: If no suffix is used, the template is considered to be bidirectional. 
NOTE 3: Local variables have no suffix but if global variables are used, the suffix "_gbl" should be appended. 
NOTE 4: If a time window is needed, the suffixes "_min" and "_max" should be appended. 
NOTE 5: In this case it is acceptable to use underscore as a word delimiter. 
NOTE 6: The naming of TP functions follows the convention described in clause 9.4 for TPs 
 

9.2 Naming IPv6 test groups 
TP groups have a short name (or identifier) and a longer, more readable title. The short name is derived from the longer 
title (i.e. it is a two or three letter abbreviation of the longer title name). For example, if the long title is "Router", the 
short name could be: "RT". It is recommended that the title is followed by the short name in parentheses, for example: 
"Router (RT)"In the case of subgroups both the title and the short name should reflect the sub structuring, essentially 
making them path names. The group delimiter in the case of the title is "/". The delimiter in the case of the short name 
is: "_". As a further example, the group "Provide IPv6 Services (PS)" which is a sub group of the "Router (RT)" group, 
has the title:  

 Router(TR)/Provide IPv6 Services(PS) 
 

and the short name: 

 RT_PS 
 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 22 

9.3 Naming IPv6 requirements 
Although individual requirements will not need to be identified in the TTCN-3 code, it will still be necessary to provide 
a unique name for each requirement in the catalogue. Each requirement name will begin with "RQ_" followed by two 
digits indicating which area of the IPv6 specification it refers to and a three-digit identifier, as follows: 

•  RQ_01_nnn IPv6 Core requirements (example: RQ_01_254) 

•  RQ_02_nnn IPv6 Security requirements (example: RQ_02_037) 

•  RQ_03_nnn IPv6 Mobility requirements (example: RQ_03_198) 

•  RQ_04_nnn IPv4 to IPv6 Transitioning requirements (example: RQ_04_471) 

9.4 Naming IPv6 TPs and TCs 
As there will be a one-to-one relationship between TPs and TCs, they will share a common numbering scheme with a 
prefix to distinguish between them. The prefixes will, naturally, be "TP" for test purposes and "TC" for test cases which 
will be followed by the five-digit sequence number taken from the requirement it corresponds to, a two digit sequence 
number and finally a character string indicating the architectural role with which it is associated, thus: 

•  TP_01_nnn_mm_aaaa/TC_01_nnn_mm_aaaa  IPv6 Core TPs and TCs 

EXAMPLE 1: TP_01_147_04_IPv6Host, TC_01_147_04_IPv6Host 

•  TP_02_nnn_mm_aaaa/TC_02_nnn_mm_aaaa  IPv6 Security TPs and TCs 

EXAMPLE 2: TP_02_109_17_IPv6Router, TC_02_109_17_IPv6Router 

•  TP_03_nnn_mm_aaaa /TC_02_nnn_mm_aaaa IPv6 Mobility TPs and TCs 

EXAMPLE 3: TP_03_033_05_IPv6Terminal, TC_03_033_05_IPv6Terminal 

•  TP_04_nnn_mm_aaaa /TC_04_nnn_mm_aaaa IPv4 to IPv6 Transitioning TPs and TCs 

EXAMPLE 4: TP_04_006_32_IPv6Server, TC_04_006_32_IPv6Server) 

10 Specifying an upper tester 
In order to completely automate conformance and interoperability testing, the upper interface or API of the IUT needs 
to be accessible to TTCN-3 test cases. The specification of this upper interface is not standardized by IPv6 RFCs and so 
there are no primitives defined for requesting the IPv6 stack to send a specific IP packet or to check if one has been 
received. Consequently, implementations of this interface are vendor specific and may even vary between different 
IUTs.  

EXAMPLE: it may based on primitives or the socket API and often requires a tight integration with the IUT. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 23 

IPv6 Router TTCN-3  Test Case

IPv6 Test System

Upper Tester
Test

Component

IPv6 Host
Test

Component

Ipv6 Router
(SUT)

IPv6 Stack 
(IUT)

Upper
Tester

IPv6 & UTP
Transport

TRI

SUT Adapter
(IPv6 & UTP Transport)

 

Figure 2: An example test configuration with an upper tester 

In conformance testing methodology the tight integration problem can be resolved by implementing an Upper Tester 
(UT) in the SUT, i.e. outside of the test system. The purpose of the UT is to play the role of a (dummy) IPv6 application 
which interacts with the IPv6 stack. It is, however, controlled by the test system via a message channel. Therefore, 
another task of the UT is to convert the messages sent by the test system into concrete IPv6 interface calls and vice 
versa. This allows a fairly generic design and encoding of a protocol between the UT and the test system. 

A UT may be implemented in the concrete implementation language used by the IUT which allows an easy integration 
of the UT with the IUT. As the UT implementation is clearly SUT specific it is not provided as part of the TTCN-3 
IPv6 test system. It is expected to be provided by the party which intends to use the test suite. 

10.1 The UT in the IPv6 test system 
In the test system the UT is represented in each test case by its own PTC. During the execution of a test case this PTC 
issues commands to interact with the upper tester in the SUT using messages or procedure calls. Although the Ipv6 test 
system does not mandate how a UT implements such an API invocation, it requires the UT to support the IPv6 UT 
protocol. 

The IPv6 UT protocol is used by IPv6 library test cases to communicate with the UT. It defines primitives which, for 
example, indicate the start and end of a test case, reset the UT in case of test case errors and send or indicate the 
reception of an IPv6 packet. In order to be as independent of the upper IPv6 interface as possible, the protocol leaves 
IPv6 packet related information in encoded format.  

The TTCN-3 type definitions for the Ipv6 UT protocol and the encoding of its primitives are discussed in more detail in. 
IPv6 UT protocol messages are to be transported using UDP/Ipv4. The UDP port to be used for communication should 
be 5080. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 24 

Annex A (informative): 
A formal notation for expressing test purposes 

A.1 Introduction 
A simple but formal notation has been developed for the expression of TPs in a consistent and structured form. This 
notation provides structure through the use of defined keywords (see table 6) but also allows the TP writer considerable 
freedom in the use of text between the keywords. 

The notation allows the grouping of TPs (to provide the TSS). It provides header information for each TP and a 
description of the TP. Line comments may be expressed using "//". Comments that cover more than one line should be 
enclosed by "/*" and "*/".  

Table 6: TP notation keywords 

TP grouping keywords TP Body keywords 
description accepts 
group after 
id and 
title before 
 containing 
TP header keywords ensure 
rc ignores 
ref indicating 
title not 
tp receives 
id  rejects 
 remains 
 sends 
 that 
 then 
 to 
 when 
 with 

 

A.2 Grouping 
The TSS (Test Suite Structure) is expressed using the group keyword. Groups may be nested to provide sub-grouping. 
The body of the group (i.e. subsequent groups or TPs) should be enclosed in curly braces, i.e. { ... }. 

Each group should have: 

•  an identifier (group id) as described in clause 9.2; 

•  a long form of the identifier (title) as described in clause 9.2; 

•  a short free text description of the test group (description).  

Indentation may be used to indicate a sub group. But in cases of deep sub-grouping this should be avoided for 
readability reasons. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 25 

In order to aid readability it is recommended that the end of the end of the group is followed by a comment that shows 
the group name (identifier).  

Example of one group and a sub group: 

 : 
 group id TP_RT 
 title Router 
 description Test Purposes for Router 
 { group id TP_RT_PS 
  title Router(RT)/Provide IPv6 Services(PS) 
  description Test Purposes for Provide IPv6 Services 
  { ... TPs or more subgroups can go here ... 
  } // end TP_RT_PS    
 } // end TP_RT 
 : 
    

A.3 TP Header 
Each TP should begin with a header which contains a number of items of descriptive information about the TP with 
each item introduced by a defined keyword but written in free text. The elements that should be included in the header 
are: 

•  the TP Identifier (tp id): 

 the unique identifier of the TP as described in clause 9.4; 

•  the TP title (title): 

 free text descriptive title of the TP; 

•  a reference to the Requirements Catalogue (rc ref) : 

 identification of the relevant text in the base standard(s) where the requirement to be tested is specified; 

•  a reference to the testing configuration (config ref): 

 identification of the predefined testing architecture which is applicable to the test. 

Example TP header: 

 : 
 tp id TP_01_147_04_IPv6Host 
 title Pad1 option 
 rc ref Item_0 and Item_1 
 config ref Config_RUT_2 
 : 

A.4 TP body 
The main body of the TP follows the header and it is here that the test itself is described. The TP is written from the 
viewpoint of the IUT. The general form of a TP is as follows: 

 ensure that {   // start of TP body 
  with { ... }    // initial conditions 
  when { ... }    // tester activities 
  then { ... }   // iut responses and verdict criteria 
  }    // end of TP body 
 

The when and then statements may be repeated, for example: 

 ensure that { 
  with { the iut in some initial state or condition }   
  when { tester does action 1 }   
  then { iut does response 1 } 
  when { tester does action 2 }   
  then { iut does response 2 and verdict criteria } 
  } 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 26 

A.4.1 The with statement 
The with statement expresses the initial state or condition of the IUT at which point the TP description begins. Note, 
this does not define the steps, or actions, needed to reach this starting condition, only the condition itself. 

Apart from free text, typical keywords that may appear in the condition are and, or, not. For example: 

 with { the IUT in idle state and port80 open } 

A.4.2 The when statement 
The when statement expresses some action, in most cases performed by the tester and observed by the IUT. Typically 
this will be a receives statement (i.e. the IUT has received some stimulus) with a description of the IPv6 header and 
relevant fields (containing, indicating). Other typical keywords that may appear in the when statement are and, or, 
not.  

For example: 

when { IUT receives Echo Request 
   containing   Hop-by-Hop Options Header 
   indicating   Header Ext Length field ZERO 
     and   a PadN option  
     containing  the Opt Data Len field set to 4 
  } 

 

In cases where there is more than one test interface in the test configuration the keyword from can be added to the 
receives. For example: 

 IUT receives Echo Request from TestNode1 
 

A.4.3 The then statement 
The then statement expresses some response (usually by the IUT) to the when statement. For example, 

 then { IUT sends the Echo Request } 
 

In cases where there is more than one test interface in the test configuration the keyword to can be added to the sends. 
For example: 

 then { RUT sends the Echo Request to TestNode2} 
 
The keywords accepts, ignores, rejects are other possible response to a received message. For example: 

 then { IUT rejects Echo Request } 
 
The remains keyword can be used to express that the IUT does not change state or condition. For example: 

 then { IUT remains in the idle state } 
 

Apart from free text, the keywords and, or, not may be used in a then statement. For example, the following is 
equivalent to the two then statements above: 

 then {  IUT rejects Echo Request 
    
   and remains in the idle state } 
 

Finally, the keywords before and after can be used to express ordering, especially in the context of timers.  
For example: 

 before T1 expires 
 
 after 15 seconds 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 27 

Annex B (informative): 
Example TTCN-3 library modules 

B.1 Electronic annex, zip file with TTCN-3 code - 
TTCN-3 library mdoules are contained in archive ts_102351v010101p0.zip which accompanies the present document.  
They can be used in a TTCN-3 editor as examples. 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 28 

Annex C (informative): 
TTCN-3 type definitions and encoding for a UT protocol 
The IPv6 UT protocol (UTP) primitives can be grouped into generic primitives as well as Ipv6 specific primitives. The 
following UTP messages are defined in the IPv6 test suite which can be found in the electronic attachment to annex B: 

•  UTP specific primitives: 

- IPv6 Request (UtpIpv6Request); 

- IPv6 Response (UtpIpv6Response); 

•  Generic primitives: 

- Start Test Case request (UtpStartTCRequest); 

- UtpEndTCRequest 

- UtpResetRequest 

- UtpGenericResponse. 

In IPv6 specific UTP messages, the application id field allows the test system to interact with multiple UTs or 
applications with one UT. The use of these identifiers should start from 0. The command used in this message should 
reflect actions to be taken from the perspective of a test case. In a successful case the return code in a response should 
provide information about the state of an application in the UT. 

In the UTP the test system always acts as a client whereas the UT acts as a server. Therefore, UT protocol requests can 
only be sent by the test system. UTP also requires that the test system polls the UT for received messages. It does so 
using the "getPkt" command. The UT must respond to all generic request messages with "UtpGenericResponse" 
messages. The UtpIp6Request must be answered by a "UtpIpv6Response" message. 

The encoding of UT protocol messages has been designed to be as simple and humanly readable as possible in order to 
simplify the analysis of communication between the test system and the UT. An encoded UT protocol message can be 
thought of as a concatenation of various text as well as octet strings. Most of the strings in a UT message are TTCN-3 
values. TTCN-3 enumeration values are to be encoded using their name (without the "e_" prefix), i.e. not their 
integer value. Finally, user defined types and their fields are encoded using the prefix string specified for a type or type 
field in the UT protocol type definition. 

Each string (no matter if it is a prefix for a TTCN-3 field, its string value, or an enumeration value) is encoded with one 
octet specifying the length of the following string and then the string value in its native format, i.e. either an octet or text 
string. Such an encoding of strings is already used for strings by other IETF protocols, e.g. the DNS protocol [6]  
clause 3.3. 

EXAMPLE: TTCN-3 message (type see type definition above): 

template UtpStartTCRequest m_utpStartTC_001 := { 
 testCaseId := 'TC_001' 
} 
 

Corresponding encoding (length octets shown in \xhh format): 

\x12Utp/1.0/StartTcReq\x06TC_001 
 



 

ETSI 

ETSI TS 102 351 V1.1.1 (2004-09) 29 

History 

Document history 

V1.1.1 September 2004 Publication 

   

   

   

   

 


	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 The TTCN-3 Framework
	5 The IPv6 test development process
	5.1 Conformance testing methodology
	5.2 Interoperability testing methodology

	6 The Requirements Catalogue
	6.1 Entries in the Requirements Catalogue

	7 Developing test suites
	7.1 Test Suite Structure (TSS) and Test Purposes (TP)
	7.1.1 TSS
	7.1.2 TP Contents
	7.1.3 TP checklist
	7.1.4 Using the TP Language

	7.2 Test suite development
	7.2.1 TP function groups
	7.2.2 Test cases
	7.2.3 Test case selection
	7.2.4 Test suite parameterization

	7.3 Test description development

	8 The TTCN-3 library
	8.1 Library structure overview
	8.1.1 Data types and values
	8.1.2 Templates
	8.1.3 Test cases
	8.1.4 Functions
	8.1.4.1 Verdict handling functions
	8.1.4.2 Synchronization functions
	8.1.4.3 TC functions
	8.1.4.4 TP functions
	8.1.4.5 Other functions


	8.2 Adding modules to the library

	9 Naming conventions
	9.1 General guidelines
	9.2 Naming IPv6 test groups
	9.3 Naming IPv6 requirements
	9.4 Naming IPv6 TPs and TCs

	10 Specifying an upper tester
	10.1 The UT in the IPv6 test system

	Annex A (informative): A formal notation for expressing test purposes
	A.1 Introduction
	A.2 Grouping
	A.3 TP Header
	A.4 TP body
	A.4.1 The with statement
	A.4.2 The when statement
	A.4.3 The then statement


	Annex B (informative): Example TTCN-3 library modules
	B.1 Electronic annex, zip file with TTCN-3 code -

	Annex C (informative): TTCN-3 type definitions and encoding for a UT protocol
	History

